Atsushi Tahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509812/publications.pdf

Version: 2024-02-01

516710 526287 28 881 16 27 citations h-index g-index papers 31 31 31 841 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. Journal of the American Chemical Society, 2016, 138, 2480-2483.	13.7	163
2	Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system. Journal of Colloid and Interface Science, 2020, 571, 66-79.	9.4	106
3	Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions. Journal of Molecular Liquids, 2019, 277, 613-623.	4.9	78
4	Encapsulation of iron nanoparticles with magnesium hydroxide shell for remarkable removal of ciprofloxacin from contaminated water. Journal of Colloid and Interface Science, 2022, 605, 813-827.	9.4	70
5	Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters. Journal of Molecular Liquids, 2019, 288, 111026.	4.9	54
6	Novel application of nanoscale zero valent iron and bimetallic nano-Fe/Cu particles for the treatment of cesium contaminated water. Journal of Environmental Chemical Engineering, 2018, 6, 4253-4264.	6.7	45
7	Synthesis of hybrid magnesium hydroxide/magnesium oxide nanorods [Mg(OH)2/MgO] for prompt and efficient adsorption of ciprofloxacin from aqueous solutions. Journal of Cleaner Production, 2022, 342, 130949.	9.3	44
8	Catalyst Design of Vaska-Type Iridium Complexes for Highly Efficient Synthesis of π-Conjugated Enamines. Organometallics, 2015, 34, 4895-4907.	2.3	39
9	Disilaruthena- and Ferracyclic Complexes Containing Isocyanide Ligands as Effective Catalysts for Hydrogenation of Unfunctionalized Sterically Hindered Alkenes. Journal of the American Chemical Society, 2018, 140, 4119-4134.	13.7	38
10	Recent topics of iridium-catalyzed hydrosilylation of tertiary amides to silylhemiaminals. Tetrahedron Letters, 2020, 61, 151423.	1.4	37
11	Arylation of Hydrocarbyl Ligands Formed from <i>n</i> à€Alkanes through C–H Bond Activation of Benzene Using a Triruthenium Cluster. European Journal of Inorganic Chemistry, 2009, 2009, 3393-3397.	2.0	24
12	Iridium-PPh ₃ Catalysts for Conversion of Amides to Enamines. Organometallics, 2019, 38, 852-862.	2.3	23
13	Sustainable Iron-Making Using Oxalic Acid: The Concept, A Brief Review of Key Reactions, and An Experimental Demonstration of the Iron-Making Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 13292-13301.	6.7	19
14	Theoretical Study of the Catalytic Hydrogenation of Alkenes by a Disilaferracyclic Complex: Can the Fe \hat{a} e"Si \hat{l} f-Bond-Assisted Activation of H \hat{a} e"H Bonds Allow Development of a Catalysis of Iron?. Journal of Organic Chemistry, 2016, 81, 10900-10911.	3.2	18
15	Chemical deposition of iron nanoparticles (FeO) on titanium nanowires for efficient adsorption of ciprofloxacin from water. Water Practice and Technology, 2022, 17, 75-83.	2.0	17
16	Metathesis Reaction of Hydrocarbyl Ligands across the Triruthenium Plane. Angewandte Chemie - International Edition, 2010, 49, 5898-5901.	13.8	16
17	MAOâ€free and extremely active catalytic system for ethylene tetramerization. Applied Organometallic Chemistry, 2019, 33, e4829.	3.5	14
18	Donor–Acceptor π-Conjugated Enamines: Functional Group-Compatible Synthesis from Amides and Their Photoabsorption and Photoluminescence Properties. Journal of Organic Chemistry, 2019, 84, 15236-15254.	3.2	13

#	Article	IF	CITATIONS
19	Synthesis and Dynamic Properties of a Triruthenium Complex Containing l³4 ₃ -l•4 ₃ -l•4 ₃ -l•5 ² (â°¥)-Ethyne and l³4 ₃ -Wethylidyne Ligands: Equilibrium of an Ethyne–Hydrido Complex with a Nonclassical l³4 ₃ -Vinyl Complex. Organometallics, 2013, 32, 260-271.	2.3	12
20	Syntheses of Substituted 1,4-Disila-2,5-cyclohexadienes from Cyclic Hexasilane Si ₆ Me ₁₂ and Alkynes via Successive Siâ€"Si Bond Activation by Pd/Isocyanide Catalysts. Organometallics, 2018, 37, 2531-2543.	2.3	11
21	<i>i)if </i> -CAM Mechanisms for the Hydrogenation of Alkenes by <i>cis</i> - and <i>trans</i> -Disilametallacyclic Carbonyl Complexes (M = Fe, Ru, Os): Experimental and Theoretical Studies. Bulletin of the Chemical Society of Japan, 2017, 90, 613-626.	3.2	9
22	Remarkably high catalyst efficiency of a disilaruthenacyclic complex for hydrosilane reduction of carbonyl compounds. Chemical Communications, 2018, 54, 11192-11195.	4.1	6
23	Dissolution of Iron Oxides Highly Loaded in Oxalic Acid Aqueous Solution for a Potential Application in Iron-Making. ISIJ International, 2022, 62, 2466-2475.	1.4	6
24	Me2S-induced Highly Selective Reduction of Aldehydes in the Presence of Ketones Involving Aldehyde-selective Rate Enhancement: A Triruthenium Cluster-catalyzed Hydrosilylation. Chemistry Letters, 2014, 43, 1829-1831.	1.3	5
25	Transformation of a μ ₃ -Benzyne Ligand into Phenol on a Cationic Triruthenium Cluster Supported by a μ ₃ -Sulfido Ligand. Organometallics, 2019, 38, 527-535.	2.3	3
26	Intramolecular Nitrene Transfer via the C≡N Bond Cleavage of Acetonitrile to a μ ₃ -Alkylidyne Ligand on a Cationic Triruthenium Plane. Organometallics, 2020, 39, 2888-2899.	2.3	3
27	Homogeneous catalyst modifier for alkyne semi-hydrogenation: systematic screening in an automated flow reactor and computational study on mechanisms. Reaction Chemistry and Engineering, 0, , .	3.7	1
28	Regio- and Stereoselective Synthesis of Multisubstituted Enamides by Treatment of Ynamides with Boronic Acids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 749-750.	0.1	0