
J Richard Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxyl radical is predominantly involved in oxidatively generated base damage to cellular DNA exposed to ionizing radiation. International Journal of Radiation Biology, 2022, 98, 1684-1690.	1.0	6
2	Introduction to the Special Issue Dedicated to Jean Cadet ^{â€} . Photochemistry and Photobiology, 2022, 98, 519-522.	1.3	0
3	Ozone-Induced DNA Damage: A Pandora's Box of Oxidatively Modified DNA Bases. Chemical Research in Toxicology, 2021, 34, 80-90.	1.7	15
4	Experimental eye research / short communication format characterization of DNA hydroxymethylation in the ocular choroid. Experimental Eye Research, 2021, 205, 108473.	1.2	1
5	Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 9947-9954.	2.1	11
6	Effects of combined exercise training on the inflammatory profile of older cancer patients treated with systemic therapy. Brain, Behavior, & Immunity - Health, 2020, 2, 100016.	1.3	5
7	Tandem Lesions Arising from 5-(Uracilyl)methyl Peroxyl Radical Addition to Guanine: Product Analysis and Mechanistic Studies. Chemical Research in Toxicology, 2020, 33, 565-575.	1.7	20
8	DNA damage in Thymidyl(3 ['] -5 ['])thymidine (TpT) induced by very low energy electrons. Journal of Physics: Conference Series, 2020, 1412, 242006.	0.3	1
9	Hydrated electrons induce the formation of interstrand cross-links in DNA modified by cisplatin adducts. Journal of Radiation Research, 2020, 61, 343-351.	0.8	2
10	(5′ <i>R</i>)-and (5′ <i>S</i>)-purine 5′,8-cyclo-2′-deoxyribonucleosides: reality or artifactual measurements? A reply to Chatgilialoglu's comments (this issue). Free Radical Research, 2019, 53, 1014-1018.	1.5	3
11	Dehydroascorbic acid S-Thiolation of peptides and proteins: Role of homocysteine and glutathione. Free Radical Biology and Medicine, 2019, 141, 233-243.	1.3	8
12	Strand Breaks Induced by Very Low Energy Electrons: Product Analysis and Mechanistic Insight into the Reaction with TpT. Journal of the American Chemical Society, 2019, 141, 10315-10323.	6.6	27
13	DNA Base Modifications Mediated by Femtosecond Laser-Induced Cold Low-Density Plasma in Aqueous Solutions. Journal of Physical Chemistry Letters, 2019, 10, 2753-2760.	2.1	6
14	Radiation-induced (5′ <i>R</i>)-and (5′ <i>S</i>)-purine 5′,8-cyclo-2′-deoxyribonucleosides in human ce revisited analysis of HPLC-MS/MS measurements. Free Radical Research, 2019, 53, 574-577.	ells:_a 1.5	10
15	Biphotonic Ionization of <scp>DNA</scp> : From Model Studies to Cell. Photochemistry and Photobiology, 2019, 95, 59-72.	1.3	22
16	Carcinogenesis: Role of Reactive Oxygen and Nitrogen Species. , 2018, , 296-296.		0
17	UNC-1 and APN-1 are the major enzymes to efficiently repair 5-hydroxymethyluracil DNA lesions in C. elegans. Scientific Reports, 2018, 8, 6860.	1.6	14
18	Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology and Medicine, 2017, 107, 13-34.	1.3	240

#	Article	IF	CITATIONS
19	Absolute vibrational excitation cross sections for 1-18 eV electron scattering from condensed dimethyl phosphate (DMP). Journal of Chemical Physics, 2017, 147, 234305.	1.2	7
20	Effets des radiations ionisantes sur les acides nucléiquesÂ: des composés modèles à la cellule Histoire De La Recherche Contemporaine, 2017, , 71-80.	0.1	1
21	Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiation Physics and Chemistry, 2016, 128, 54-59.	1.4	14
22	Dynamic Interplay between the Transcriptome and Methylome in Response to Oxidative and Alkylating Stress. Chemical Research in Toxicology, 2016, 29, 1428-1438.	1.7	8
23	Base Release and Modification in Solid-Phase DNA Exposed to Low-Energy Electrons. Radiation Research, 2016, 186, 520.	0.7	7
24	lsomerization of 5-Hydroxy-5-methylhydantoin 2′-Deoxynucleoside into α-Furanose, β-Furanose, α-Pyranose, and β-Pyranose Anomers. Chemical Research in Toxicology, 2016, 29, 65-74.	1.7	2
25	Characterization of dehydroascorbateâ€mediated modification of glutaredoxin by mass spectrometry. Journal of Mass Spectrometry, 2015, 50, 1358-1366.	0.7	6
26	Radiosensitization of DNA by Cisplatin Adducts Results from an Increase in the Rate Constant for the Reaction with Hydrated Electrons and Formation of Pt ^I . Journal of Physical Chemistry B, 2015, 119, 9496-9500.	1.2	17
27	Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 2014, 42, 7450-7460.	6.5	111
28	One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. International Journal of Radiation Biology, 2014, 90, 423-432.	1.0	121
29	TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 764-765, 18-35.	0.9	45
30	Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: Similarities and differences. Archives of Biochemistry and Biophysics, 2014, 557, 47-54.	1.4	130
31	Cisplatin Intrastrand Adducts Sensitize DNA to Base Damage by Hydrated Electrons. Journal of Physical Chemistry B, 2014, 118, 4803-4808.	1.2	24
32	Thymidine Decomposition Induced by Low-Energy Electrons and Soft X Rays under N ₂ and O ₂ Atmospheres. Radiation Research, 2014, 181, 629-640.	0.7	16
33	Modification of Peptide and Protein Cysteine Thiol Groups by Conjugation with a Degradation Product of Ascorbate. Chemical Research in Toxicology, 2013, 26, 1333-1339.	1.7	17
34	Role of Interleukin- $1^{\hat{l}^2}$ in Radiation-Enhancement of MDA-MB-231 Breast Cancer Cell Invasion. Radiation Research, 2013, 180, 292-298.	0.7	29
35	DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012559-a012559.	2.3	638
36	Fragmentation of protonated oligonucleotides by energetic photons and C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mrow><mml:mi>q</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup>ions. Physical Review A, 2013, 87, .</mml:math 	1.0	33

#	Article	IF	CITATIONS
37	Generation of Guanine–Thymine Cross-Links in Human Cells by One-Electron Oxidation Mechanisms. Chemical Research in Toxicology, 2013, 26, 1031-1033.	1.7	39
38	Hydrated Electrons React with High Specificity with Cisplatin Bound to Single-Stranded DNA. Journal of Physical Chemistry B, 2013, 117, 15994-15999.	1.2	11
39	Side-by-Side Comparison of DNA Damage Induced by Low-Energy Electrons and High-Energy Photons with Solid TpTpT Trinucleotide. Journal of Physical Chemistry B, 2013, 117, 10122-10131.	1.2	19
40	Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. , 2013, , 269-288.		0
41	Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2508-13.	3.3	38
42	Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. Bioanalytical Reviews, 2012, 4, 55-74.	0.1	32
43	Profiling Cytosine Oxidation in DNA by LC-MS/MS. Chemical Research in Toxicology, 2012, 25, 1902-1911.	1.7	44
44	Fundamental Mechanisms of DNA Radiosensitization: Damage Induced by Low-Energy Electrons in Brominated Oligonucleotide Trimers. Journal of Physical Chemistry B, 2012, 116, 9676-9682.	1.2	57
45	Radiation-Induced Formation of 2′,3′-Dideoxyribonucleosides in DNA: A Potential Signature of Low-Energy Electrons. Journal of the American Chemical Society, 2012, 134, 17366-17368.	6.6	14
46	Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radical Research, 2012, 46, 367-381.	1.5	114
47	Low-Energy Electron-Induced Damage in a Trinucleotide Containing 5-Bromouracil. Journal of Physical Chemistry B, 2011, 115, 13668-13673.	1.2	33
48	Evaluation of Deuterium Labeled and Unlabeled Bis-methyl Glutathione Combined with Nanoliquid Chromatographyâ^'Mass Spectrometry to Screen and Characterize Reactive Drug Metabolites. Chemical Research in Toxicology, 2011, 24, 412-417.	1.7	10
49	Filamentation of femtosecond laser pulses as a source for radiotherapy. Proceedings of SPIE, 2011, , .	0.8	0
50	DNA Damage Induced by Low-Energy Electrons: Conversion of Thymine to 5,6-Dihydrothymine in the Oligonucleotide Trimer TpTpT. Radiation Research, 2011, 175, 240-246.	0.7	33
51	Characterization and detection in cells of a novel adduct derived from the conjugation of glutathione and dehydroascorbate. Free Radical Biology and Medicine, 2010, 49, 984-991.	1.3	18
52	Oxidation Reactions of Cytosine DNA Components by Hydroxyl Radical and One-Electron Oxidants in Aerated Aqueous Solutions. Accounts of Chemical Research, 2010, 43, 564-571.	7.6	151
53	Recommendations for Standardized Description of and Nomenclature Concerning Oxidatively Damaged Nucleobases in DNA. Chemical Research in Toxicology, 2010, 23, 705-707.	1.7	57
54	Generation of 2′-Deoxyadenosine <i>N</i> ⁶ -Aminyl Radicals from the Photolysis of Phenylhydrazone Derivatives. Chemical Research in Toxicology, 2010, 23, 48-54.	1.7	25

#	Article	IF	CITATIONS
55	Low-Energy Electron-Induced DNA Damage: Effect of Base Sequence in Oligonucleotide Trimers. Journal of the American Chemical Society, 2010, 132, 5422-5427.	6.6	60
56	Reaching for the Other Side: Generating Sequence-Dependent Interstrand Cross-Links with 5-Bromodeoxyuridine and \hat{I}^3 -rays. Biochemistry, 2009, 48, 2005-2011.	1.2	26
57	Low Energy Electron Induced DNA Damage: Effects of Terminal Phosphate and Base Moieties on the Distribution of Damage. Journal of the American Chemical Society, 2008, 130, 5612-5613.	6.6	76
58	Dehydration, deamination and enzymatic repair of cytosine glycols from oxidized poly(dG-dC) and poly(dI-dC). Nucleic Acids Research, 2007, 36, 284-293.	6.5	30
59	Near-UV Photolysis of 2-Methyl-1,4-naphthoquinoneâ^'DNA Duplexes:  Characterization of Reversible and Stable Interstrand Cross-Links between Quinone and Adenine Moieties. Chemical Research in Toxicology, 2007, 20, 745-756.	1.7	11
60	5-Bromodeoxyuridine Radiosensitization:  Conformation-Dependent DNA Damage. Biochemistry, 2007, 46, 9089-9097.	1.2	43
61	Oxidation of 2'-Deoxycytidine to Four Interconverting Diastereomers of N1-Carbamoyl-4,5-dihydroxy-2-oxoimidazolidine Nucleosides. Journal of Organic Chemistry, 2007, 72, 3672-3678.	1.7	12
62	Phosphodiester and N-glycosidic bond cleavage in DNA induced by 4–15 eV electrons. Journal of Chemical Physics, 2006, 124, 064710.	1.2	65
63	DNA Damage Induced by Low-Energy Electrons: Electron Transfer and Diffraction. Physical Review Letters, 2006, 96, 208101.	2.9	115
64	Near-UV Induced Interstrand Cross-Links in Anthraquinoneâ^'DNA Duplexes. Journal of the American Chemical Society, 2006, 128, 14798-14799.	6.6	17
65	Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome. DNA Repair, 2006, 5, 235-242.	1.3	11
66	Ascorbate and H2O2 induced oxidative DNA damage in Jurkat cells. Free Radical Biology and Medicine, 2006, 40, 2071-2079.	1.3	41
67	Oxidation of 5-Hydroxypyrimidine Nucleosides to 5-Hydroxyhydantoin and Its α-Hydroxy-ketone Isomer. Chemical Research in Toxicology, 2005, 18, 1332-1338.	1.7	21
68	Interstrand Cross-Link Induction by UV Radiation in Bromodeoxyuridine-Substituted DNA:  Dependence on DNA Conformation. Biochemistry, 2005, 44, 16957-16966.	1.2	45
69	Chemical Basis of DNA Sugarâ^'Phosphate Cleavage by Low-Energy Electrons. Journal of the American Chemical Society, 2005, 127, 16592-16598.	6.6	166
70	Irradiator to study damage induced to large nonvolatile molecules by low-energy electrons. Review of Scientific Instruments, 2004, 75, 4534-4540.	0.6	18
71	Electron transfer in DNA duplexes containing 2-methyl-1,4-naphthoquinone. Nucleic Acids Research, 2004, 32, 6154-6263.	6.5	22
72	Effects of Duplex Stability on Charge-Transfer Efficiency within DNA. Topics in Current Chemistry, 2004, , 1-25.	4.0	48

#	Article	IF	CITATIONS
73	Ascorbate modulation of H2O2 and camptothecin-induced cell death in Jurkat cells. Cancer Chemotherapy and Pharmacology, 2004, 54, 315-21.	1.1	11
74	Glycosidic Bond Cleavage of Thymidine by Low-Energy Electrons. Journal of the American Chemical Society, 2004, 126, 1002-1003.	6.6	104
75	Oxidation of 5-Hydroxy-2â€~-deoxyuridine into Isodialuric Acid, Dialuric Acid, and Hydantoin Products. Journal of the American Chemical Society, 2004, 126, 6548-6549.	6.6	29
76	Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. American Journal of Clinical Nutrition, 2000, 71, 1194-1200.	2.2	59
77	Relationship Between the Response to Influenza Vaccination and the Nutritional Status in Institutionalized Elderly Subjects. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1999, 54, M59-M64.	1.7	55
78	2′-Deoxycytidine Glycols, a Missing Link in the Free Radical-mediated Oxidation of DNA. Journal of Biological Chemistry, 1999, 274, 20833-20838.	1.6	51
79	Glutathione and ascorbate are negatively correlated with oxidative DNA damage in human lymphocytes. Carcinogenesis, 1999, 20, 607-613.	1.3	101
80	Analysis of Glutathione and Glutathione Disulfide in Whole Cells and Mitochondria by Postcolumn Derivatization High-Performance Liquid Chromatography with ortho-Phthalaldehyde. Analytical Biochemistry, 1999, 274, 125-130.	1.1	74
81	Hydroxyl-Radical-Induced Decomposition of 2â€~-Deoxycytidine in Aerated Aqueous Solutions. Journal of the American Chemical Society, 1999, 121, 4101-4110.	6.6	82
82	Incorporation of two deoxycytidine oxidation products into cellular DNA. Biochemistry and Cell Biology, 1997, 75, 377-381.	0.9	8
83	Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mechanisms of Ageing and Development, 1997, 96, 15-34.	2.2	136
84	Photosensitized Oxidation of 5-Methyl-2â€~deoxycytidine by 2-Methyl-1,4-naphthoquinone: Characterization of 5-(Hydroperoxymethyl)-2â€~deoxycytidine and Stable Methyl Group Oxidation Products. Journal of the American Chemical Society, 1996, 118, 11406-11411.	6.6	83
85	Increased susceptibility of low-density lipoprotein (LDL) to oxidation by Î ³ -radiolysis with age. FEBS Letters, 1996, 392, 45-48.	1.3	49
86	Conformational Analysis of Some Radiation-Induced Decomposition Products of Thymidine Using13C NMR Analysis. Magnetic Resonance in Chemistry, 1996, 34, 577-581.	1.1	5
87	Excision of Oxidative Cytosine Modifications from γ-Irradiated DNA byEscherichia coliEndonuclease III and Human Whole-Cell Extracts. Analytical Biochemistry, 1996, 233, 76-86.	1.1	39
88	Methylene blue-mediated photooxidation of 7,8-dihydro-8-oxo-2′-deoxyguanosine. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1263, 17-24.	2.4	56
89	Oxidative damage to DNA. , 1995, , 51-64.		5
90	Thymidine Hydroperoxides: Structural Assignment, Conformational Features, and Thermal Decomposition in Water. Journal of the American Chemical Society, 1994, 116, 2235-2242.	6.6	95

#	Article	IF	CITATIONS
91	The oxidation of blood plasma and low density lipoprotein components by chemically generated singlet oxygen. Journal of Biological Chemistry, 1993, 268, 18502-6.	1.6	80
92	Endogenous oxidative damage of deoxycytidine in DNA Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 3380-3384.	3.3	262
93	QUINONE SENSITIZED ELECTRON TRANSFER PHOTOOXIDATION OF NUCLEIC ACIDS: CHEMISTRY OF THYMINE AND THYMIDINE RADICAL CATIONS IN AQUEOUS SOLUTION*. Photochemistry and Photobiology, 1990, 52, 333-343.	1.3	98
94	[52] Photodynarnic methods for oxy radical-induced DNA damage. Methods in Enzymology, 1990, 186, 502-511.	0.4	55
95	BIOLOGICAL ACTIVITIES OF PHTHALOCYANINESâ€X. SYNTHESES AND ANALYSES OF SULFONATED PHTHALOCYANINES. Photochemistry and Photobiology, 1988, 47, 713-717.	1.3	152
96	Phthalocyanines as Sensitizers for Photodynamic Therapy of Cancer. , 1988, , 435-444.		14
97	Specific Deprotonation Reactions of the Pyrimidine Radical Cation Resulting from the Menadione Mediated Photosensitization of 2′-Deoxycytidine. Free Radical Research Communications, 1987, 2, 295-301.	1.8	53
98	MENADIONE SENSITIZED PHOTOOXIDATION OF NUCLEIC ACID and PROTEIN CONSTITUENTS. AN ESR and SPIN-TRAPPING STUDY. Photochemistry and Photobiology, 1987, 46, 175-182.	1.3	44
99	BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—V. PHOTODYNAMIC THERAPY OF EMT-6 MAMMARY TUMORS IN MICE WITH SULFONATED PHTHALOCYANINES. Photochemistry and Photobiology, 1987, 45, 581-586.	1.3	108
100	BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—VI. PHOTOOXIDATION OF Lâ€TRYPTOPHAN BY SELECTIVELY SULFONATED GALLIUM PHTHALOCYANINES: SINGLET OXYGEN YIELDS AND EFFECT OF AGGREGATION. Photochemistry and Photobiology, 1987, 45, 587-594.	1.3	117
101	Photosensitized reactions of nucleic acids. Biochimie, 1986, 68, 813-834.	1.3	179
102	BIOLOGICAL ACTIVITIES OF PHTHALOCYANINES—IV. TYPE II SENSITIZED PHOTOOXIDATION OF L-TRYPTOPHAN AND CHOLESTEROL BY SULFONATED METALLO PHTHALOCYANINES. Photochemistry and Photobiology, 1986, 44, 117-123.	1.3	143
103	Sensitized Photo-oxidation of Thymidine by 2-methyl-1,4-naphthoquinone. Characterization of the Stable Photoproducts. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1986, 50, 491-505.	1.0	82
104	PHOTO-OXIDATION OF THYMINE SENSITIZED BY 2-METHYL-1,4-NAPHTHOQUINONE: ANALYSIS OF PRODUCTS INCLUDING THREE NOVEL PHOTO-DIMERS. Photochemistry and Photobiology, 1984, 40, 589-597.	1.3	47