Paolo Bigini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erythropoietin Selectively Attenuates Cytokine Production and Inflammation in Cerebral Ischemia by Targeting Neuronal Apoptosis. Journal of Experimental Medicine, 2003, 198, 971-975.	8.5	481
2	Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Research, 2002, 952, 128-134.	2.2	326
3	Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold Nanoparticles. ACS Nano, 2017, 11, 5519-5529.	14.6	131
4	Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 2014, 35, 3455-3466.	11.4	111
5	Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiology of Disease, 2014, 62, 218-232.	4.4	110
6	Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006, 172, 27-37.	2.3	103
7	Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1370-F1381.	2.7	88
8	Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine, 2005, 30, 125-131.	3.2	85
9	The wobbler mouse, an ALS animal model. Molecular Genetics and Genomics, 2013, 288, 207-229.	2.1	85
10	Nonhematopoietic Erythropoietin Derivatives Prevent Motoneuron Degeneration In Vitro and In Vivo. Molecular Medicine, 2006, 12, 153-160.	4.4	82
11	Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomaterialia, 2016, 30, 188-198.	8.3	80
12	Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis. Circulation Research, 2015, 117, 333-345.	4.5	78
13	The Interleukin-8 (IL-8/CXCL8) Receptor Inhibitor Reparixin Improves Neurological Deficits and Reduces Long-term Inflammation in Permanent and Transient Cerebral Ischemia in Rats. Molecular Medicine, 2007, 13, 125-133.	4.4	77
14	Organ Distribution and Bone Tropism of Cellulose Nanocrystals in Living Mice. Biomacromolecules, 2015, 16, 2862-2871.	5.4	72
15	Neuroprotective Effects of Toll-Like Receptor 4 Antagonism in Spinal Cord Cultures and in a Mouse Model of Motor Neuron Degeneration. Molecular Medicine, 2012, 18, 971-981.	4.4	66
16	Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Critical Care Medicine, 2016, 44, e1118-e1131.	0.9	66
17	The Heterogeneity of Amyotrophic Lateral Sclerosis: A Possible Explanation of Treatment Failure. Current Medicinal Chemistry, 2007, 14, 3185-3200.	2.4	62
18	Applications of Surface Plasmon Resonance (SPR) for the Characterization of Nanoparticles Developed for Biomedical Purposes. Sensors, 2012, 12, 16420-16432.	3.8	59

PAOLO BIGINI

#	Article	IF	CITATIONS
19	Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology, 2019, 13, 1087-1101.	3.0	56
20	Acetyl-l-carnitine shows neuroprotective and neurotrophic activity in primary culture of rat embryo motoneurons. Neuroscience Letters, 2002, 329, 334-338.	2.1	48
21	The role and impact of polyethylene glycol on anaphylactic reactions to COVID-19 nano-vaccines. Nature Nanotechnology, 2021, 16, 1169-1171.	31.5	48
22	Dexamethasone Conjugation to Biodegradable Avidin-Nucleic-Acid-Nano-Assemblies Promotes Selective Liver Targeting and Improves Therapeutic Efficacy in an Autoimmune Hepatitis Murine Model. ACS Nano, 2019, 13, 4410-4423.	14.6	47
23	Neutrophil Extracellular Traps Induce the Epithelial-Mesenchymal Transition: Implications in Post-COVID-19 Fibrosis. Frontiers in Immunology, 2021, 12, 663303.	4.8	45
24	Intracerebroventricular Administration of Human Umbilical Cord Blood Cells Delays Disease Progression in Two Murine Models of Motor Neuron Degeneration. Rejuvenation Research, 2011, 14, 623-639.	1.8	44
25	Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release. ACS Nano, 2017, 11, 9413-9423.	14.6	44
26	Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2017, 37, 1413-1427.	3.6	42
27	Mitochondrial oxidative metabolism in motor neuron degeneration (mnd) mouse central nervous system. European Journal of Neuroscience, 2002, 16, 2291-2296.	2.6	41
28	The Molecular Assembly of Amyloid Al ² Controls Its Neurotoxicity and Binding to Cellular Proteins. PLoS ONE, 2011, 6, e24909.	2.5	39
29	Neuropathologic and Biochemical Changes During Disease Progression in Liver X Receptor β ^{â^'/â^'} Mice, A Model of Adult Neuron Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 593-605.	1.7	38
30	<i>In Vivo</i> Fate of Avidin-Nucleic Acid Nanoassemblies as Multifunctional Diagnostic Tools. ACS Nano, 2014, 8, 175-187.	14.6	36
31	Riluzole, unlike the AMPA antagonist RPR119990, reduces motor impairment and partially prevents motoneuron death in the wobbler mouse, a model of neurodegenerative disease. Experimental Neurology, 2006, 198, 114-128.	4.1	34
32	Retinal oxidation, apoptosis and age- and sex-differences in the mnd mutant mouse, a model of neuronal ceroid lipofuscinosis. Brain Research, 2004, 1014, 209-220.	2.2	33
33	Evidence for chronic mitochondrial impairment in the cervical spinal cord of a murine model of motor neuron disease. Neurobiology of Disease, 2004, 17, 349-357.	4.4	33
34	Biocompatible fluorescent nanoparticles for <i>in vivo</i> stem cell tracking. Nanotechnology, 2013, 24, 245603.	2.6	29
35	Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice. Stem Cell Research, 2017, 25, 166-178.	0.7	29
36	Glutamate transporters in the spinal cord of the wobbler mouse. NeuroReport, 2001, 12, 1815-1820.	1.2	28

Paolo Bigini

#	Article	IF	CITATIONS
37	Regulation of redox-sensitive exofacial protein thiols in CHO cells. Biological Chemistry, 2006, 387, 1371-6.	2.5	28
38	Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease. PLoS ONE, 2012, 7, e32326.	2.5	28
39	Human Skeletal Muscle Stem Cell Antiinflammatory Activity Ameliorates Clinical Outcome in Amyotrophic Lateral Sclerosis Models. Molecular Medicine, 2012, 18, 401-411.	4.4	27
40	Expression of glutamate receptor subtypes in the spinal cord of control andmnd mice, a model of motor neuron disorder. Journal of Neuroscience Research, 2002, 70, 553-560.	2.9	25
41	Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice. BMC Neuroscience, 2006, 7, 71.	1.9	25
42	Vitamin E Phosphate Coating Stimulates Bone Deposition in Implant-related Infections in a Rat Model. Clinical Orthopaedics and Related Research, 2018, 476, 1324-1338.	1.5	25
43	Different early ER-stress responses in the CLN8mnd mouse model of neuronal ceroid lipofuscinosis. Neuroscience Letters, 2011, 488, 258-262.	2.1	24
44	Recombinant human TNF-binding protein-1 (rhTBP-1) treatment delays both symptoms progression and motor neuron loss in the wobbler mouse. Neurobiology of Disease, 2008, 29, 465-476.	4.4	23
45	Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering. ACS Nano, 2021, 15, 9701-9716.	14.6	23
46	A biodistribution study of PEGylated PCL-based nanoparticles in C57BL/6 mice bearing B16/F10 melanoma. Nanotechnology, 2014, 25, 335706.	2.6	22
47	An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine, 2016, 11, 643-656.	3.3	21
48	Glial activation and TNFR-I upregulation precedes motor dysfunction in the spinal cord of mnd mice. Cytokine, 2004, 25, 127-135.	3.2	20
49	Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS. Molecular Pharmaceutics, 2017, 14, 124-134.	4.6	20
50	Integrated multiplatform method for <i>in vitro</i> quantitative assessment of cellular uptake for fluorescent polymer nanoparticles. Nanotechnology, 2014, 25, 045102.	2.6	19
51	Longitudinal tracking of triple labeled umbilical cord derived mesenchymal stromal cells in a mouse model of Amyotrophic Lateral Sclerosis. Stem Cell Research, 2015, 15, 243-253.	0.7	19
52	Fate of PLA and PCL-Based Polymeric Nanocarriers in Cellular and Animal Models of Triple-Negative Breast Cancer. Biomacromolecules, 2016, 17, 744-755.	5.4	19
53	An across-species comparison of the sensitivity of different organisms to Pb-based perovskites used in solar cells. Science of the Total Environment, 2020, 708, 135134.	8.0	18
54	S100B Protein and 4-Hydroxynonenal in the Spinal Cord of Wobbler Mice. Neurochemical Research, 2003, 28, 341-345.	3.3	17

PAOLO BIGINI

#	Article	IF	CITATIONS
55	Neuronal hyperexcitability and seizures are associated with changes in glial–neuronal interactions in the hippocampus of a mouse model of epilepsy with mental retardation. Journal of Neurochemistry, 2010, 115, 1445-1454.	3.9	17
56	Monitoring the Fate of Orally Administered PLGA Nanoformulation for Local Delivery of Therapeutic Drugs. Pharmaceutics, 2019, 11, 658.	4.5	17
57	Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environmental Science: Nano, 2022, 9, 1199-1211.	4.3	17
58	A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations of Shape-Dependent Biological Effects and Immunomodulation. ACS Nano, 2022, 16, 1547-1559.	14.6	16
59	Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Scientific Reports, 2016, 6, 30343.	3.3	15
60	Proteomic Profiling of Cervical and Lumbar Spinal Cord Reveals Potential Protective Mechanisms in the Wobbler Mouse, a Model of Motor Neuron Degeneration. Journal of Proteome Research, 2009, 8, 5229-5240.	3.7	14
61	Shape engineered TiO ₂ nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. RSC Advances, 2016, 6, 70501-70509.	3.6	14
62	Lack of caspase-dependent apoptosis in spinal motor neurons of the wobbler mouse. Neuroscience Letters, 2007, 426, 106-110.	2.1	13
63	Morphological features and responses to AMPA receptor-mediated excitotoxicity of mouse motor neurons: comparison in purified, mixed anterior horn or motor neuron/glia cocultures. Journal of Neuroscience Methods, 2008, 170, 85-95.	2.5	13
64	Endogenous Erythropoietin as Part of the Cytokine Network in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Molecular Medicine, 2008, 14, 682-688.	4.4	13
65	An integrated approach for the systematic evaluation of polymeric nanoparticles in healthy and diseased organisms. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	12
66	Immunohistochemical Localization of TNFÎ \pm and Its Receptors in the Rodent Central Nervous System. , 2004, 98, 073-080.		8
67	Properties of Ca2+-activated K+ channels in erythrocytes from patients with myotonic muscular dystrophy. , 1998, 21, 1465-1472.		7
68	Neural precursors (NPCs) from adult L967Q mice display early commitment to "in vitro―neuronal differentiation and hyperexcitability. Experimental Neurology, 2012, 236, 307-318.	4.1	7
69	Single particle extinction and scattering optical method unveils in real time the influence of the blood components on polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2597-2603.	3.3	7
70	Lipofuscin Accumulation and Gene Expression in Different Tissues of mnd Mice. Molecular Neurobiology, 2012, 45, 247-257.	4.0	6
71	Food-Grade Titanium Dioxide Induces Toxicity in the Nematode Caenorhabditis elegans and Acute Hepatic and Pulmonary Responses in Mice. Nanomaterials, 2022, 12, 1669.	4.1	6
72	Tumor necrosis factor-α receptor 1 (p55) knockout only transiently decreases the activation of c-Jun and does not affect the survival of axotomized dopaminergic nigral neurons. European Journal of Neuroscience, 2005, 22, 267-272.	2.6	5

PAOLO BIGINI

#	Article	IF	CITATIONS
73	Cellulose nanocrystals: a multimodal tool to enhance the targeted drug delivery against bone disorders. Nanomedicine, 2020, 15, 2271-2285.	3.3	5
74	Increased [³ H]Dâ€aspartate release and changes in glutamate receptor expression in the hippocampus of the <i>mnd</i> mouse. Journal of Neuroscience Research, 2012, 90, 1148-1158.	2.9	4
75	Internalization of nanopolymeric tracers does not alter characteristics of placental cells. Journal of Cellular and Molecular Medicine, 2016, 20, 1036-1048.	3.6	4
76	The mode of dexamethasone decoration influences avidin-nucleic-acid-nano-assembly organ biodistribution and in vivo drug persistence. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102497.	3.3	4
77	Cellulose nanocrystals as promising nano-devices in the biomedical field. AIP Conference Proceedings, 2018, , .	0.4	3
78	Induction of Epithelial-Mesenchymal Transition (EMT) by Neutrophil Extracellular Traps (NETs) as Possible Molecular Mechanism in CLAD. Journal of Heart and Lung Transplantation, 2021, 40, S151.	0.6	3
79	Role of Erythropoietin in Inflammatory Pathologies of the CNS. , 2006, , 191-209.		0