Julie Overbaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509511/publications.pdf Version: 2024-02-01

LULIE OVERBALICH

#	Article	IF	CITATIONS
1	HIV reservoir quantification using cross-subtype multiplex ddPCR. IScience, 2022, 25, 103615.	4.1	16
2	Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein finds additional vaccine-induced epitopes beyond those for mild infection. ELife, 2022, 11, .	6.0	19
3	Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathogens, 2022, 18, e1010155.	4.7	6
4	The TOP vector: a new high-titer lentiviral construct for delivery of sgRNAs and transgenes to primary TÂcells. Molecular Therapy - Methods and Clinical Development, 2021, 20, 30-38.	4.1	4
5	Development of antibody-dependent cell cytotoxicity function in HIV-1 antibodies. ELife, 2021, 10, .	6.0	3
6	Improved HIV-positive infant survival is correlated with high levels of HIV-specific ADCC activity in multiple cohorts. Cell Reports Medicine, 2021, 2, 100254.	6.5	16
7	Derivation of an HIV Risk Score for African Women Who Engage in Sex Work. AIDS and Behavior, 2021, 25, 3292-3302.	2.7	4
8	High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell, 2021, 184, 2927-2938.e11.	28.9	35
9	Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs. Cell Reports, 2021, 35, 109164.	6.4	44
10	A diverse collection of B cells responded to HIV infection in infant BG505. Cell Reports Medicine, 2021, 2, 100314.	6.5	6
11	Functional development of a V3/glycan-specific broadly neutralizing antibody isolated from a case of HIV superinfection. ELife, 2021, 10, .	6.0	6
12	High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. ELife, 2021, 10, .	6.0	15
13	HIV-1 protection: Antibodies move in for the kill. Cell Reports Medicine, 2021, 2, 100428.	6.5	1
14	SARS-CoV-2 Antibody Binding and Neutralization in Dried Blood Spot Eluates and Paired Plasma. Microbiology Spectrum, 2021, 9, e0129821.	3.0	15
15	Associations between vaginal bacteria implicated in HIV acquisition risk and proinflammatory cytokines and chemokines. Sexually Transmitted Infections, 2020, 96, 3-9.	1.9	21
16	Phage-DMS: A Comprehensive Method for Fine Mapping of Antibody Epitopes. IScience, 2020, 23, 101622.	4.1	15
17	Understanding protection from SARS-CoV-2 by studying reinfection. Nature Medicine, 2020, 26, 1680-1681.	30.7	44
18	The Robust Restriction of Zika Virus by Type-I Interferon in A549 Cells Varies by Viral Lineage and Is Not Determined by IFITM3. Viruses, 2020, 12, 503.	3.3	12

JULIE OVERBAUGH

#	Article	IF	CITATIONS
19	Identification of HIV-1 Envelope Mutations that Enhance Entry Using Macaque CD4 and CCR5. Viruses, 2020, 12, 241.	3.3	3
20	Dynamics of HIV DNA reservoir seeding in a cohort of superinfected Kenyan women. PLoS Pathogens, 2020, 16, e1008286.	4.7	41
21	Zika Virus Circulates at Low Levels in Western and Coastal Kenya. Journal of Infectious Diseases, 2020, 222, 847-852.	4.0	6
22	Why we need good mentoring. Nature Reviews Cancer, 2019, 19, 489-493.	28.4	6
23	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
24	Macaque interferon-induced transmembrane proteins limit replication of SHIV strains in an Envelope-dependent manner. PLoS Pathogens, 2019, 15, e1007925.	4.7	11
25	Virological failure in children living with HIV on antiretroviral therapy: correlates and predictive value of clinical measurements and CD4 cell count. International Journal of STD and AIDS, 2019, 30, 1207-1213.	1.1	1
26	An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity, 2019, 50, 520-532.e3.	14.3	81
27	Massively Parallel Profiling of HIV-1 Resistance to the Fusion Inhibitor Enfuvirtide. Viruses, 2019, 11, 439.	3.3	14
28	Monoclonal Antibody 2C6 Targets a Cross-Clade Conformational Epitope in gp41 with Highly Active Antibody-Dependent Cell Cytotoxicity. Journal of Virology, 2019, 93, .	3.4	7
29	Correlates of HIV detection among breastfeeding postpartum Kenyan women eligible under Option B+. PLoS ONE, 2019, 14, e0216252.	2.5	3
30	Kappa chain maturation helps drive rapid development of an infant HIV-1 broadly neutralizing antibody lineage. Nature Communications, 2019, 10, 2190.	12.8	31
31	Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1. Frontiers in Immunology, 2019, 10, 1025.	4.8	37
32	Identification of HIV gp41-specific antibodies that mediate killing of infected cells. PLoS Pathogens, 2019, 15, e1007572.	4.7	35
33	Schistosomiasis was not associated with higher HIV-1 plasma or genital set point viral loads among HIV seroconverters from four cohort studies. PLoS Neglected Tropical Diseases, 2019, 13, e0007886.	3.0	2
34	Superinfection Drives HIV Neutralizing Antibody Responses from Several B Cell Lineages that Contribute to a Polyclonal Repertoire. Cell Reports, 2018, 23, 682-691.	6.4	20
35	Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. Lancet Infectious Diseases, The, 2018, 18, 554-564.	9.1	175
36	Defining the Barriers to Women Publishing in High-Impact Journals. Journal of Virology, 2018, 92, .	3.4	1

Julie Overbaugh

#	Article	IF	CITATIONS
37	Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.	6.4	91
38	Decay of HIV DNA in the Reservoir and the Impact of Short Treatment Interruption in Kenyan Infants. Open Forum Infectious Diseases, 2018, 5, ofx268.	0.9	11
39	Mapping mutational effects along the evolutionary landscape of HIV envelope. ELife, 2018, 7, .	6.0	96
40	Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathogens, 2018, 14, e1007159.	4.7	46
41	CD4–HIV-1 Envelope Interactions: Critical Insights for the Simian/HIV/Macaque Model. AIDS Research and Human Retroviruses, 2018, 34, 778-779.	1.1	3
42	The Role of Immune Responses in HIV Mother-to-Child Transmission. Advances in Virus Research, 2018, 100, 19-40.	2.1	11
43	A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV. ELife, 2018, 7, .	6.0	115
44	Comprehensive Mapping of HIV-1 Escape from a Broadly Neutralizing Antibody. Cell Host and Microbe, 2017, 21, 777-787.e4.	11.0	88
45	Comprehensive Characterization of Humoral Correlates of Human Immunodeficiency Virus 1 Superinfection Acquisition in High-risk Kenyan Women. EBioMedicine, 2017, 18, 216-224.	6.1	15
46	Owl monkey CCR5 reveals synergism between CD4 and CCR5 in HIV-1 entry. Virology, 2017, 512, 180-186.	2.4	8
47	Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathogens, 2017, 13, e1006148.	4.7	51
48	Epitope-Independent Purification of Native-Like Envelope Trimers from Diverse HIV-1 Isolates. Journal of Virology, 2016, 90, 9471-9482.	3.4	43
49	Maternal Neutralization-Resistant Virus Variants Do Not Predict Infant HIV Infection Risk. MBio, 2016, 7, e02221-15.	4.1	17
50	HIV-1 Neutralizing Antibodies with Limited Hypermutation from an Infant. Cell, 2016, 166, 77-87.	28.9	143
51	Genital Shedding of Resistant Human Immunodeficiency Virus-1 Among Women Diagnosed With Treatment Failure by Clinical and Immunologic Monitoring. Open Forum Infectious Diseases, 2016, 3, ofw019.	0.9	4
52	Vertical Cytomegalovirus Transmission From HIV-Infected Women Randomized to Formula-Feed or Breastfeed Their Infants. Journal of Infectious Diseases, 2016, 213, 992-998.	4.0	25
53	Adapting SHIVs In Vivo Selects for Envelope-Mediated Interferon-α Resistance. PLoS Pathogens, 2016, 12, e1005727.	4.7	10
54	Development of <scp>SHIV</scp> s with circulating, transmitted <scp>HIV</scp> â€1 variants. Journal of Medical Primatology, 2015, 44, 296-300.	0.6	20

Julie Overbaugh

#	Article	IF	CITATIONS
55	HIV transmission biology. Aids, 2015, 29, 2219-2227.	2.2	26
56	The Broad Neutralizing Antibody Responses after HIV-1 Superinfection Are Not Dominated by Antibodies Directed to Epitopes Common in Single Infection. PLoS Pathogens, 2015, 11, e1004973.	4.7	29
57	HIV-specific CD4-induced Antibodies Mediate Broad and Potent Antibody-dependent Cellular Cytotoxicity Activity and are Commonly Detected in Plasma from HIV-infected Humans. EBioMedicine, 2015, 2, 1464-1477.	6.1	60
58	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
59	Risk of Drug Resistance Among Persons Acquiring HIV Within a Randomized Clinical Trial of Single- or Dual-Agent Preexposure Prophylaxis. Journal of Infectious Diseases, 2015, 211, 1211-8.	4.0	80
60	Mutations in HIV-1 Envelope That Enhance Entry with the Macaque CD4 Receptor Alter Antibody Recognition by Disrupting Quaternary Interactions within the Trimer. Journal of Virology, 2015, 89, 894-907.	3.4	46
61	Passively Acquired Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity in HIV-Infected Infants Is Associated with Reduced Mortality. Cell Host and Microbe, 2015, 17, 500-506.	11.0	137
62	FCGR2A and FCGR3A Genotypes in Human Immunodeficiency Virus Mother-to-Child Transmission. Open Forum Infectious Diseases, 2015, 2, ofv149.	0.9	9
63	Identification of Owl Monkey CD4 Receptors Broadly Compatible with Early-Stage HIV-1 Isolates. Journal of Virology, 2015, 89, 8611-8622.	3.4	22
64	Mother–Infant HIV Transmission: Do Maternal HIV-Specific Antibodies Protect the Infant?. PLoS Pathogens, 2014, 10, e1004283.	4.7	16
65	The Role of Cell-Associated Virus in Mother-to-Child HIV Transmission. Journal of Infectious Diseases, 2014, 210, S631-S640.	4.0	35
66	Quotidian Changes of Genital Tract Cytokines in Human Immunodeficiency Virus-1-Infected Women During the Menstrual Cycle. Open Forum Infectious Diseases, 2014, 1, ofu002.	0.9	9
67	Early development of broadly neutralizing antibodies in HIV-1–infected infants. Nature Medicine, 2014, 20, 655-658.	30.7	167
68	B-cells that Bind HIV Particles Encode CD4-induced, C11-like and V3-specific Antibodies that Mediate Broad ADCC Activity. AIDS Research and Human Retroviruses, 2014, 30, A193-A193.	1.1	0
69	HIV-1 Superinfection Occurs Less Frequently Than Initial Infection in a Cohort of High-Risk Kenyan Women. PLoS Pathogens, 2013, 9, e1003593.	4.7	41
70	HIV-Specific Antibodies Capable of ADCC Are Common in Breastmilk and Are Associated with Reduced Risk of Transmission in Women with High Viral Loads. PLoS Pathogens, 2012, 8, e1002739.	4.7	224
71	HIV-1 Superinfection in Women Broadens and Strengthens the Neutralizing Antibody Response. PLoS Pathogens, 2012, 8, e1002611.	4.7	58
72	A Species-Specific Amino Acid Difference in the Macaque CD4 Receptor Restricts Replication by Global Circulating HIV-1 Variants Representing Viruses from Recent Infection. Journal of Virology, 2012, 86, 12472-12483.	3.4	52

JULIE OVERBAUGH

#	Article	IF	CITATIONS
73	Neutralizing Antibody Escape during HIV-1 Mother-to-Child Transmission Involves Conformational Masking of Distal Epitopes in Envelope. Journal of Virology, 2012, 86, 9566-9582.	3.4	30
74	The Antibody Response against HIV-1. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007039-a007039.	6.2	152
75	The neutralization sensitivity of viruses representing human immunodeficiency virus type 1 variants of diverse subtypes from early in infection is dependent on producer cell, as well as characteristics of the specific antibody and envelope variant. Virology, 2012, 427, 25-33.	2.4	25
76	The role of amino acid changes in the human immunodeficiency virus type 1 transmembrane domain in antibody binding and neutralization. Virology, 2011, 421, 235-244.	2.4	19
77	A healthy work–life balance can enhance research. Nature, 2011, 477, 27-28.	27.8	11
78	Adaptation of Subtype A Human Immunodeficiency Virus Type 1 Envelope to Pig-Tailed Macaque Cells. Journal of Virology, 2011, 85, 4409-4420.	3.4	32
79	Temporal analysis of HIV envelope sequence evolution and antibody escape in a subtype A-infected individual with a broad neutralizing antibody response. Virology, 2010, 398, 115-124.	2.4	23
80	The Infectious Molecular Clone and Pseudotyped Virus Models of Human Immunodeficiency Virus Type 1 Exhibit Significant Differences in Virion Composition with Only Moderate Differences in Infectivity and Inhibition Sensitivity. Journal of Virology, 2009, 83, 9002-9007.	3.4	29
81	Medication diaries do not improve outcomes with highly active antiretroviral therapy in Kenyan children: a randomized clinical trial. Journal of the International AIDS Society, 2009, 12, 8-8.	3.0	18
82	Enhancing Exposure of HIV-1 Neutralization Epitopes through Mutations in gp41. PLoS Medicine, 2008, 5, e9.	8.4	85
83	Highly Active Antiretroviral Therapy versus Zidovudine/Nevirapine Effects on Early Breast Milk HIV Type-1 RNA: A Phase II Randomized Clinical Trial. Antiviral Therapy, 2008, 13, 799-807.	1.0	19
84	Chronic HIV-1 Infection Frequently Fails to Protect against Superinfection. PLoS Pathogens, 2007, 3, e177.	4.7	117
85	A TRIM5α-independent post-entry restriction to HIV-1 infection of macaque cells that is dependent on the path of entry. Virology, 2007, 363, 310-318.	2.4	26
86	Human Immunodeficiency Virus Type 1 V1-V2 Envelope Loop Sequences Expand and Add Glycosylation Sites over the Course of Infection, and These Modifications Affect Antibody Neutralization Sensitivity. Journal of Virology, 2006, 80, 9586-9598.	3.4	267
87	Neutralization Escape Variants of Human Immunodeficiency Virus Type 1 Are Transmitted from Mother to Infant. Journal of Virology, 2006, 80, 835-844.	3.4	271
88	Quantification of Genital Human Immunodeficiency Virus Type 1 (HIV-1) DNA in Specimens from Women with Low Plasma HIV-1 RNA Levels Typical of HIV-1 Nontransmitters. Journal of Clinical Microbiology, 2006, 44, 4357-4362.	3.9	34
89	Longitudinal Analysis of Human Immunodeficiency Virus Type 1 RNA in Breast Milk and of Its Relationship to Infant Infection and Maternal Disease. Journal of Infectious Diseases, 2003, 187, 741-747. 	4.0	202
90	Feline Pit2 Functions as a Receptor for Subgroup B Feline Leukemia Viruses. Journal of Virology, 2001, 75, 10563-10572.	3.4	40

JULIE OVERBAUGH

#	Article	IF	CITATIONS
91	Receptors and Entry Cofactors for Retroviruses Include Single and Multiple Transmembrane-Spanning Proteins as well as Newly Described Glycophosphatidylinositol-Anchored and Secreted Proteins. Microbiology and Molecular Biology Reviews, 2001, 65, 371-389.	6.6	165
92	Identification of Envelope Determinants of Feline Leukemia Virus Subgroup B That Permit Infection and Gene Transfer to Cells Expressing Human Pit1 or Pit2. Journal of Virology, 2001, 75, 6841-6849.	3.4	40
93	Gender differences in HIV-1 diversity at time of infection. Nature Medicine, 2000, 6, 71-75.	30.7	209
94	Effect of Breastfeeding and Formula Feeding on Transmission of HIV-1. JAMA - Journal of the American Medical Association, 2000, 283, 1167.	7.4	794
95	Evaluation of Performance of the Gen-Probe Human Immunodeficiency Virus Type 1 Viral Load Assay Using Primary Subtype A, C, and D Isolates from Kenya. Journal of Clinical Microbiology, 2000, 38, 2688-2695.	3.9	136
96	Studies of Human Immunodeficiency Virus Type 1 Mucosal Viral Shedding and Transmission in Kenya. Journal of Infectious Diseases, 1999, 179, S401-S404.	4.0	25
97	Variants from the Diverse Virus Population Identified at Seroconversion of a Clade A Human Immunodeficiency Virus Type 1-Infected Woman Have Distinct Biological Properties. Journal of Virology, 1999, 73, 5255-5264.	3.4	76