Xiao-Wu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2509011/publications.pdf Version: 2024-02-01

Χιλο-λλ/μ.μ

#	Article	IF	CITATIONS
1	Effect of Short-Range Ordering on the Strength-Ductility Synergy of Fine-Grained Cu–Mn Alloys at Different Temperatures. Acta Metallurgica Sinica (English Letters), 2022, 35, 651-661.	2.9	4
2	Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142418.	5.6	18
3	Preparation and characterization of calcium phosphate containing coating on plasma electrolytic oxidized magnesium and its corrosion behavior in simulated body fluids. Journal of Alloys and Compounds, 2022, 896, 163042.	5.5	6
4	An artful microstructure in nacre: Superior resistance to fatigue deformation. International Journal of Fatigue, 2022, 157, 106705.	5.7	3
5	A pathway to improve low-cycle fatigue life of face-centered cubic metals via grain boundary engineering. Journal of Materials Science and Technology, 2022, 113, 82-89.	10.7	17
6	Distinctive Impact of Heat Treatment on the Mechanical Behavior of Nacreous and Crossed-Lamellar Structures in Biological Shells: Critical Role of Organic Matrix. ACS Biomaterials Science and Engineering, 2022, 8, 1143-1155.	5.2	7
7	Improving the high-cycle fatigue life of a high-strength spring steel for automobiles by suitable shot peening and heat treatment. International Journal of Fatigue, 2022, 161, 106891.	5.7	15
8	Adsorption and Sensing Properties of Formaldehyde on Chemically Modified Graphene Surfaces. Crystals, 2022, 12, 553.	2.2	9
9	High-Cycle Fatigue Behavior and Fatigue Strength Prediction of Differently Heat-Treated 35CrMo Steels. Metals, 2022, 12, 688.	2.3	8
10	Stress and Defect Effects on Electron Transport Properties at SnO ₂ /Perovskite Interfaces: A First-Principles Insight. ACS Omega, 2022, 7, 16187-16196.	3.5	4
11	Distinct impacts of growth band on the mechanical properties of abalone nacre under compressive and tensile stresses. Journal of Materials Research and Technology, 2022, 19, 669-684.	5.8	3
12	Study on the Fracture Toughness of Softwood and Hardwood Estimated by Boundary Effect Model. Materials, 2022, 15, 4039.	2.9	0
13	Improving Biological Functions of Three-Dimensional Printed Ti2448 Scaffolds by Decoration with Polydopamine and Extracellular Matrices. ACS Applied Bio Materials, 2022, 5, 3982-3990.	4.6	3
14	A crucial impact of short-range ordering on the cyclic deformation and damage behavior of face-centered cubic alloys: A case study on Cu-Mn alloys. Acta Materialia, 2021, 205, 116559.	7.9	34
15	Formaldehyde gas sensing properties of transition metal-doped graphene: a first-principles study. Journal of Materials Science, 2021, 56, 12256-12269.	3.7	21
16	Improving fatigue life of 7N01 Al alloy weld by surface spinning strengthening. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2597-2609.	3.4	4
17	Impact of short range ordering on the anomalous four-stage strain hardening behavior of low solid-solution hardening Ni–Cr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141193.	5.6	16
18	Adsorption and Photocatalytic Activity of Nano-magnetic Materials Fe3O4@C@TiO2-AgBr-Ag for Rhodamine B. Current Nanoscience, 2021, 17, 484-493.	1.2	5

#	Article	IF	CITATIONS
19	A simultaneous improvement of the strength and plasticity of spring steels by replacing Mo with Si. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141516.	5.6	8
20	Preparation of Polyurea Microcapsules by Interfacial Polymerization of Isocyanate and Chitosan Oligosaccharide. Materials, 2021, 14, 3753.	2.9	9
21	Improving the stress-controlled fatigue life of low solid-solution hardening Ni-Cr alloys by enhancing short range ordering degree. International Journal of Fatigue, 2021, 149, 106266.	5.7	7
22	An Ingenious Microstructure Arrangement in Deep-Sea <i>Nautilus</i> Shell against the Harsh Environment. ACS Biomaterials Science and Engineering, 2021, 7, 4819-4827.	5.2	7
23	A high-strength and high-toughness nacreous structure in a deep-sea Nautilus shell: Critical role of platelet geometry and organic matrix. Journal of Materials Science and Technology, 2021, 88, 189-202.	10.7	21
24	Fatigue mechanism of medium-carbon steel welded joint: Competitive impacts of various defects. International Journal of Fatigue, 2021, 151, 106363.	5.7	18
25	A high specific Young's modulus steel reinforced by spheroidal kappa-carbide. Journal of Materials Science and Technology, 2021, 87, 54-59.	10.7	4
26	A radial distribution of calices in coral skeleton of Pocillopora verrucosa (Ellis and Solander, 1786) against ocean currents. Marine Biology, 2021, 168, 1.	1.5	1
27	Six-fold symmetry origin of Dirac cone formation in two-dimensional materials. New Journal of Physics, 2021, 23, 113033.	2.9	3
28	Tunable formaldehyde sensing properties of palladium cluster decorated graphene. RSC Advances, 2021, 11, 37120-37130.	3.6	9
29	Investigation on the cracking resistances of different ageing treated 18Ni maraging steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138553.	5.6	18
30	Kinking and cracking behavior in nacre under stepwise compressive loading. Materials Science and Engineering C, 2020, 108, 110364.	7.3	19
31	Thickness-dependent mechanical properties of nacre in Cristaria plicata shell: Critical role of interfaces. Journal of Materials Science and Technology, 2020, 44, 1-8.	10.7	19
32	A unique two-stage strength-ductility match in low solid-solution hardening Ni-Cr alloys: Decisive role of short range ordering. Scripta Materialia, 2020, 178, 269-273.	5.2	42
33	Threeâ€dimensional Octameric Assembly of Icosahedral M 13 Units in [Au 8 Ag 57 (Dppp) 4 (C 6 H 11 S) 32 Cl 2]Cl and its [Au 8 Ag 55 (Dppp) 4 (C 6 H 11 S) 34][BPh 4. Angewandte Chemie, 2020, 132, 3919-3923.	2.0	7
34	The κ-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals, 2020, 10, 1021.	2.3	28
35	Grain boundary engineering of AL6XN super-austenitic stainless steel: Distinctive effects of planar-slip dislocations and deformation twins. Materials Characterization, 2020, 170, 110689.	4.4	16
36	A possibility to synchronously improve the high-temperature strength and ductility in face-centered cubic metals through grain boundary engineering. Scripta Materialia, 2020, 187, 216-220.	5.2	35

#	Article	IF	CITATIONS
37	Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103940.	3.1	19
38	Novel injectable and self-setting composite materials for bone defect repair. Science China Materials, 2020, 63, 876-887.	6.3	11
39	Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2020, 33, 789-798.	2.9	19
40	Role of Multi-Scale Microstructure in the Degradation of Al Wire for Power Transmission. Applied Sciences (Switzerland), 2020, 10, 2234.	2.5	1
41	Versatile carboxylate-directed structures of ten 1D → 3D Ni(<scp>ii</scp>) coordination polymers: fluorescence behaviors and electrochemical activities. CrystEngComm, 2019, 21, 5344-5355.	2.6	20
42	Impact of Short-Range Clustering on the Multistage Work-Hardening Behavior in Cu–Ni Alloys. Metals, 2019, 9, 151.	2.3	22
43	Metal/Carboxylate-Induced Versatile Structures of Nine 0D → 3D Complexes with Different Fluorescent and Electrochemical Behaviors. ACS Omega, 2019, 4, 17366-17378.	3.5	15
44	Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 1450-1456.	4.9	4
45	Gain boundary character distribution optimization of Cu-16at.%Al alloy by thermomechanical process: Critical role of deformation microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138299.	5.6	27
46	Improved thermal expansion and electrochemical performance of La0.4Sr0.6Co0.9Sb0.1O3Ce0.8Sm0.2O1.9 composite cathode for IT-SOFCs. Solid State Sciences, 2019, 91, 126-132.	3.2	26
47	Anomalous recovery of work hardening rate in Cu-Mn alloys with high stacking fault energies under uniaxial compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 745-754.	5.6	37
48	Crack initiation and growth in a special quasi-sandwich crossed-lamellar structure in Cymbiola nobilis seashell. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 104-112.	3.1	10
49	Design, Synthesis and Fungicidal Activity against Rhizoctonia solani of New Phenylpyrazoloxyl Propionic Acid Derivatives. Chinese Journal of Organic Chemistry, 2019, 39, 397.	1.3	1
50	2D → 3D interlocking Zn(II) arrays directed by uncoordinated groups: Fluorescent behaviors, recycling and enhancements of photocatalytic properties. Polyhedron, 2018, 145, 35-42.	2.2	6
51	Spacers-directed structural diversity of Co(II)/Zn(II) complexes based on S-/O-bridged dipyridylamides: electrochemical, fluorescent recognition behavior and photocatalytic properties. Journal of Coordination Chemistry, 2018, 71, 483-501.	2.2	3
52	Effects of Cr content on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy during long-term thermal exposure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 449-460.	5.6	14
53	Design, synthesis, and fungicidal activity of novel 1,3,4-oxadiazole derivatives. Chinese Chemical Letters, 2018, 29, 915-918.	9.0	16
54	Microstructure-related in vitro bioactivity of a natural ceramic of Saxidomus purpuratus shell. Materials and Design, 2018, 139, 512-520.	7.0	3

#	Article	IF	CITATIONS
55	Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 483-488.	7.1	52
56	Interface Characterization and Performances of a Novel Pure Al Clad Al Alloy Wire. Advanced Engineering Materials, 2018, 20, 1800082.	3.5	3
57	Effect of minor additions on the microstructures and stress rupture properties of a directionally solidified Ni-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 303-312.	5.6	17
58	Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 533-542.	5.6	18
59	Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 663-671.	4.9	5
60	Evaluating the fatigue cracking risk of surface strengthened 50CrMnMoVNb spring steel with abnormal life time distribution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 192-204.	5.6	19
61	Microstructures and high-temperature mechanical properties of a directionally solidified Ni-based superalloy: Influence of boron content. Journal of Alloys and Compounds, 2018, 767, 915-923.	5.5	14
62	Deformation and fracture behavior of a natural shell ceramic: Coupled effects of shell shape and microstructure. Materials Science and Engineering C, 2018, 90, 557-567.	7.3	6
63	Adsorption Properties of Granular Activated Carbon-Supported Titanium Dioxide Particles for Dyes and Copper Ions. Scientific Reports, 2018, 8, 6463.	3.3	25
64	Spacers-induced structural diversity of cobalt coordination polymers based on "V―type dipyridylamide and dicarboxylic ligands: Fluorescent, magnetic and photocatalytic properties. Polyhedron, 2017, 126, 205-213.	2.2	9
65	Effects of La doping on electrical conductivity, thermal expansion and electrochemical performance in La x Sr 1–x Co 0.9 Sb 0.1 O 3–δ cathodes for IT–SOFCs. Ceramics International, 2017, 43, 6487-6493.	4.8	15
66	A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering. Scripta Materialia, 2017, 133, 59-64.	5.2	70
67	Mechanical properties of crossed-lamellar structures in biological shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 54-71.	3.1	87
68	Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure. Scientific Reports, 2017, 7, 40043.	3.3	26
69	Exceptional ring topology makes diamond allotropes as light-weight superhard materials. Diamond and Related Materials, 2017, 80, 140-146.	3.9	0
70	Thicknessâ€Dependent Tensile and Fatigue Behavior of A Singleâ€Slipâ€Oriented Cu Single Crystal. Crystal Research and Technology, 2017, 52, 1700178.	1.3	5
71	Origins of Dirac cone formation in AB3 and A3B (A, B = C, Si, and Ge) binary monolayers. Scientific Reports, 2017, 7, 10546.	3.3	32
72	High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 258-271.	5.6	45

#	Article	IF	CITATIONS
73	Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 484-492.	5.6	53
74	Crystallographic texture of crossed-lamellar structure in <i>Cymbiola nobilis</i> shell. Journal of the Ceramic Society of Japan, 2017, 125, 419-422.	1.1	3
75	Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire. Materials, 2016, 9, 764.	2.9	9
76	Effect of Pre-Fatigue on the Monotonic Deformation Behavior of a Coplanar Double-Slip-Oriented Cu Single Crystal. Metals, 2016, 6, 293.	2.3	4
77	Strain rate-dependent high temperature compressive deformation characteristics of ultrafine-grained pure aluminum produced by ECAP. Transactions of Nonferrous Metals Society of China, 2016, 26, 966-973.	4.2	5
78	Coupled Influence of Temperature and Strain Rate on Tensile Deformation Characteristics of Hot-Extruded AZ31 Magnesium Alloy. Acta Metallurgica Sinica (English Letters), 2016, 29, 163-172.	2.9	14
79	Origins of Dirac cones and parity dependent electronic structures of α-graphyne derivatives and silagraphynes. Nanoscale, 2016, 8, 15223-15232.	5.6	24
80	Influence of cyclic stress amplitude on mechanisms of deformation of a high nitrogen austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 208-216.	5.6	27
81	Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corrosion Science, 2016, 107, 49-59.	6.6	99
82	Plastic Deformation and Damage Behaviors of Fe-18Cr-18Mn-0.63N High-Nitrogen Austenitic Stainless Steel under Uniaxial Tension and Compression. Materials Transactions, 2015, 56, 46-53.	1.2	13
83	Effects of Coiling Temperature on the Microstructures, Mechanical Properties and Textures of 08Al Deep Drawing Steel Sheet. Materials Transactions, 2015, 56, 1626-1632.	1.2	0
84	Three-Point Bending Fracture Behavior of Single Oriented Crossed-Lamellar Structure in Scapharca broughtonii Shell. Materials, 2015, 8, 6154-6162.	2.9	11
85	Energetic stability, atomic and electronic structures of extended γ-graphyne: A density functional study. Journal of Molecular Modeling, 2015, 21, 154.	1.8	7
86	Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 103-106.	5.6	64
87	Density functional study of α-graphyne derivatives: Energetic stability, atomic and electronic structure. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 70, 190-197.	2.7	13
88	Temperature-Dependent Compressive Deformation Behavior of Commercially Pure Iron Processed by ECAP. Acta Metallurgica Sinica (English Letters), 2015, 28, 531-541.	2.9	3
89	Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study. Journal of Physical Chemistry Letters, 2015, 6, 1333-1339.	4.6	41
90	Biological Selfâ€Arrangement of Fiber Like Aragonite and Its Effect on Mechanical Behavior of <i>Veined rapa whelk</i> Shell. Journal of the American Ceramic Society, 2015, 98, 3319-3325.	3.8	23

Xiao-Wu Li

#	Article	IF	CITATIONS
91	Microstructural Characteristic and its Relation to Mechanical Properties of <i>Clinocardium californiense</i> Shell. Journal of the American Ceramic Society, 2014, 97, 3991-3998.	3.8	21
92	Fractal analysis of microstructure-related indentation toughness of Clinocardium californiense shell. Ceramics International, 2014, 40, 7627-7631.	4.8	15
93	Preparation and Characterizations of Bioglass Ceramic Cement/Ca–P Coating on Pure Magnesium for Biomedical Applications. ACS Applied Materials & Interfaces, 2014, 6, 513-525.	8.0	61
94	Effect of pre-fatigue deformation on thickness-dependent tensile behavior of coarse-grained pure aluminum sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 99-107.	5.6	17
95	Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Materials Science and Engineering C, 2014, 42, 362-367.	7.3	81
96	Optimization of grain boundary character distribution in Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel. Acta Metallurgica Sinica (English Letters), 2013, 26, 497-502.	2.9	17
97	Processing, microstructure and mechanical properties of biomedical magnesium with a specific two-layer structure. Progress in Natural Science: Materials International, 2013, 23, 183-189.	4.4	18
98	Characterizations of Temperature-Dependent Tensile Deformation and Fracture Features of Commercially Pure Titanium. Materials Transactions, 2013, 54, 1709-1714.	1.2	8
99	EFFECTS OF PRE-FATIGUE DEFORMATION ON THE UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE AI. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 658.	0.3	5
100	Monotonic and Cyclic Deformation in Single Crystals. , 2013, , 2313-2323.		0
101	Dislocation Structures in a Cyclically Deformed Single-Slip-Oriented Fe-35ÂwtÂpct Cr Alloy Single Crystal Containing Fine Cr-Rich Precipitates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5038-5047.	2.2	1
102	Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 546, 59-67.	5.6	21
103	Qualitative and quantitative characterizations of fracture surfaces of AL6XN super-austenitic stainless steel fatigued at different stress amplitudes. Progress in Natural Science: Materials International, 2012, 22, 48-52.	4.4	7
104	Microstructural Characterization and Hardness Behavior of a Biological Saxidomus purpuratus Shell. Journal of Materials Science and Technology, 2011, 27, 139-146.	10.7	39
105	Compressive Deformation Behaviors of Coarse- and Ultrafine-Grained Pure Titanium at Different Temperatures: A Comparative Study. Materials Transactions, 2011, 52, 1617-1622.	1.2	36
106	EFFECT OF ECAP ON THE HIGH-TEMPERATURE COMPRESSIVE DEFORMATION BEHAVIOR OF LY12 ALUMINUM ALLOYS. , 2011, , .		0
107	Structure and mechanical properties of Saxidomus purpuratus biological shells. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1514-1530.	3.1	61
108	Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Materials Science and Engineering C, 2011, 31, 724-729.	7.3	64

Xiao-Wu Li

#	Article	IF	CITATIONS
109	Effects of pre-deformation and subsequent low-temperature annealing on transformation, mechanical properties and shape memory behavior of a Ti-rich TiNi alloy. International Journal of Materials Research, 2011, 102, 550-555.	0.3	2
110	EFFECT OF SINTERING TEMPERATURE ON THE STRUCTURE AND BIOACTIVITY OF HAp-5.0wt.%SO2 BIOCERAMIC COMPOSITES. , 2011, , .		0
111	SEM Electron Channeling Contrast Imaging of Dislocation Structures in Fatigued [017] Cu Single Crystals Oriented for Critical Double Slip. Materials Transactions, 2010, 51, 887-891.	1.2	4
112	Characterization of dislocation structures in copper single crystals using electron channelling contrast technique in SEM. Crystal Research and Technology, 2009, 44, 315-321.	1.3	20
113	Effect of orientation on the cyclic deformation behavior of silver single crystals: Comparison with the behavior of copper and nickel single crystals. Acta Materialia, 2009, 57, 4845-4854.	7.9	32
114	EFFECT OF STRAIN RATE ON THE HIGH-TEMPERATURE COMPRESSIVE DEFORMATION BEHAVIOR OF ULTRAFINE-GRAINED COPPER. International Journal of Modern Physics B, 2009, 23, 1758-1763.	2.0	6
115	Temperatureâ€dependent deformation and damage behaviour of ultrafineâ€grained copper under uniaxial compression. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2417-2421.	1.8	23
116	Fatigue fracture behavior of a single-slip-oriented Fe-35wt.% Cr alloy single crystal containing fine-scale Cr-rich precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 426-429.	5.6	5
117	Study of fatigue dislocation structures in [233] coplanar double-slip-oriented copper single crystals using SEM electronic channelling contrast. International Journal of Materials Research, 2008, 99, 958-963.	0.3	6
118	Motion of [100]-tilt grain boundaries under cyclic stresses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 242-248.	5.6	6
119	Compressive and fatigue damage behavior of commercially pure zinc. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 466, 38-46.	5.6	25
120	SEM-ECC observations of dislocation structures in a cyclically deformed Cu single crystal oriented for [\$\$overline{2}23\$\$] conjugate double slip. Journal of Materials Science, 2007, 42, 4716-4719.	3.7	13
121	Cyclic deformation behavior of a single-slip-oriented Fe–35wt.%Cr alloy single crystal containing fine Cr-rich precipitates. Scripta Materialia, 2003, 48, 545-550.	5.2	10
122	Dislocation Structure in Cyclically Deformed Coplanar Double-Slip-Oriented Copper Single Crystals. Physica Status Solidi A, 2002, 191, 97-105.	1.7	13
123	Dislocation Structure in a Fatigued Cu-16at%Al Alloy Single Crystal Oriented for Double Slip. Physica Status Solidi A, 2002, 192, R1-R3.	1.7	3
124	Dislocation structures in fatigued critical and conjugate double-slip-oriented copper single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 333, 51-59.	5.6	53
125	SEM-ECC Investigation of Dislocation Arrangements in Cyclically Deformed Copper Single Crystals with Different Crystallographic Orientations. Defect and Diffusion Forum, 2001, 188-190, 153-170.	0.4	25
126	Influence of crystallographic orientation on cyclic strain-hardening behaviour of copper single crystals. Philosophical Magazine Letters, 1999, 79, 869-875.	1.2	21

#	Article	IF	CITATIONS
127	Cyclic deformation behavior of double-slip-oriented copper single crystals I: coplanar double slip orientation on 011-11,,11 side of the stereographic triangle. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 260, 132-138.	5.6	28
128	Cyclic deformation behavior of double-slip-oriented copper single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 265, 18-24.	5.6	26
129	Cyclic deformation behavior of double-slip-oriented copper single crystals III: conjugate double slip orientation on 001–11 side of the stereographic triangle. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 269, 166-174.	5.6	24
130	Survey of plateau behaviour in the cyclic stress-strain curve of copper single crystals. Philosophical Magazine Letters, 1999, 79, 715-719.	1.2	25
131	Investigation of dislocation structure in a cyclically deformed copper single crystal using electron channeling contrast technique in SEM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 248, 299-303.	5.6	18
132	Cyclic stress–strain response and surface deformation features of [011] multiple-slip-oriented copper single crystals. Acta Materialia, 1998, 46, 4497-4505.	7.9	50
133	Quantitative study of correlation between fracture surface roughness and fatigue properties of composites. Materials Letters, 1996, 29, 235-240.	2.6	9
134	Quantitative analysis of fracture surface by roughness and fractal method. Scripta Metallurgica Et Materialia, 1995, 33, 803-809.	1.0	29
135	Controlling Carbide Evolution to Improve the Ductility in High Specific Young's Modulus Steels. Acta Metallurgica Sinica (English Letters), 0, , 1.	2.9	1
136	Improving the HCHO Sensing Selectivity on Ag-Doped Graphene by Oxygen Functionalization: A First-Principles Study. ACS Omega, 0, , .	3.5	1
137	Growth Ring-dependent Fracture Toughness of Sea Urchin Spines Estimated by Boundary Effect Model. Journal of Bionic Engineering, 0, , .	5.0	0