Jacobs H Jordan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2508750/publications.pdf

Version: 2024-02-01

		706676	685536
28	914	14	24
papers	citations	h-index	g-index
28	28	28	1242
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The emerging applications of pillararene architectures in supramolecular catalysis. Chinese Chemical Letters, 2022, 33, 89-96.	4.8	44
2	Synthesis and characterization of TEMPO-oxidized peptide-cellulose conjugate biosensors for detecting human neutrophil elastase. Cellulose, 2022, 29, 1293-1305.	2.4	11
3	Detection of Human Neutrophil Elastase by Fluorescent Peptide Sensors Conjugated to TEMPO-Oxidized Nanofibrillated Cellulose. International Journal of Molecular Sciences, 2022, 23, 3101.	1.8	8
4	Silver Nanoparticle-Intercalated Cotton Fiber for Catalytic Degradation of Aqueous Organic Dyes for Water Pollution Mitigation. Nanomaterials, 2022, 12, 1621.	1.9	6
5	Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers, 2022, 14, 2154.	2.0	2
6	Lignin-containing cellulose nanofibers with gradient lignin content obtained from cotton gin motes and cotton gin trash. Cellulose, 2021, 28, 757-773.	2.4	17
7	Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angewandte Chemie - International Edition, 2021, 60, 9205-9214.	7.2	75
8	Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angewandte Chemie, 2021, 133, 9289-9298.	1.6	8
9	Effect of Nanocellulose on the Properties of Cottonseed Protein Isolate as a Paper Strength Agent. Materials, 2021, 14, 4128.	1.3	7
10	Dual Binding Modes of a Small Cavitand. Supramolecular Chemistry, 2021, 33, 266-271.	1.5	2
11	Buffer and Salt Effects in Aqueous Host–Guest Systems: Screening, Competitive Binding, or Both?. Journal of the American Chemical Society, 2021, 143, 18605-18616.	6.6	27
12	Cellulose hydrolysis using ionic liquids and inorganic acids under dilute conditions: morphological comparison of nanocellulose. RSC Advances, 2020, 10, 39413-39424.	1.7	37
13	Investigation of bisphenol-substituted spirocyclic phosphazenes as cotton textile–based flame retardants. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502092088.	0.5	0
14	Application of Brown Cotton-Supported Palladium Nanoparticles in Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2020, 3, 6304-6309.	2.4	14
15	Proximal charge effects on guest binding to a non-polar pocket. Chemical Science, 2020, 11, 3656-3663.	3.7	21
16	Supramolecular Strategies for Controlling Reactivity within Confined Nanospaces. Angewandte Chemie, 2020, 132, 13816-13825.	1.6	28
17	Supramolecular Strategies for Controlling Reactivity within Confined Nanospaces. Angewandte Chemie - International Edition, 2020, 59, 13712-13721.	7.2	94
18	General Strategies in Modulating Reactivity within Well-Defined Supramolecular Nanospaces. Series on Chemistry, Energy and the Environment, 2020, , 1-27.	0.3	0

#	Article	IF	CITATIONS
19	Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge. Nanomaterials, 2019, 9, 1232.	1.9	41
20	Molecular protection of fatty acid methyl esters within a supramolecular capsule. Chemical Communications, 2019, 55, 11695-11698.	2.2	14
21	Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose, 2019, 26, 5959-5979.	2.4	84
22	Binding properties and supramolecular polymerization of a water-soluble resorcin[4]arene. Organic Chemistry Frontiers, 2019, 6, 1236-1243.	2.3	6
23	lon–Hydrocarbon and/or Ion–Ion Interactions: Direct and Reverse Hofmeister Effects in a Synthetic Host. Journal of the American Chemical Society, 2018, 140, 4092-4099.	6.6	60
24	Water-Soluble Cavitands â [*] †., 2017, , 387-404.		1
25	Synthesis of Water-Soluble Deep-Cavity Cavitands. Organic Letters, 2016, 18, 4048-4051.	2.4	29
26	Investigation of Lysine-Functionalized Dendrimers as Dichlorvos Detoxification Agents. Biomacromolecules, 2015, 16, 3434-3444.	2.6	18
27	Molecular containers assembled through the hydrophobic effect. Chemical Society Reviews, 2015, 44, 547-585.	18.7	260
28	Preparation of Cellulose Nanocrystals from Cotton Gin Motes and Cotton Gin Trash. ACS Symposium Series, 0, , 15-33.	0.5	0