Fatemeh Parastesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2508248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Memristive Neuron Map Model and Its Network's Dynamics under Electrochemical Coupling. Electronics (Switzerland), 2022, 11, 153.	1.8	30
2	Synchronization in Hindmarsh–Rose neurons subject to higher-order interactions. Chaos, 2022, 32, 013125.	1.0	61
3	Relay interlayer synchronisation: invariance and stability conditions. Nonlinearity, 2022, 35, 681-718.	0.6	11
4	Synchronization in a Multiplex Network of Nonidentical Fractional-Order Neurons. Fractal and Fractional, 2022, 6, 169.	1.6	10
5	Blinking coupling enhances network synchronization. Physical Review E, 2022, 105, .	0.8	36
6	Chimeras. Physics Reports, 2021, 898, 1-114.	10.3	172
7	Role of links on the structural properties of different network topologies. Europhysics Letters, 2021, 133, 40001.	0.7	4
8	Chimera state in a network of nonlocally coupled impact oscillators. Journal of Zhejiang University: Science A, 2021, 22, 235-244.	1.3	2
9	Collective behavior in a two-layer neuronal network with time-varying chemical connections that are controlled by a Petri net. Chaos, 2021, 31, 033138.	1.0	28
10	Simplest symmetric chaotic flows: the strange case of asymmetry in Master Stability Function. European Physical Journal: Special Topics, 2021, 230, 1999-2010.	1.2	3
11	Chimera State in the Network of Fractional-Order FitzHugh–Nagumo Neurons. Complexity, 2021, 2021, 1-9.	0.9	15
12	Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network. Chaos, Solitons and Fractals, 2021, 153, 111498.	2.5	23
13	Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18, 9394-9409.	1.0	26
14	Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105175.	1.7	57
15	Extended non-stationary chimera-like region in a network of non-identical coupled Van der Pol's oscillators. European Physical Journal: Special Topics, 2020, 229, 2239-2247.	1.2	2
16	Is There a Relation Between Synchronization Stability and Bifurcation Type?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050123.	0.7	6
17	Complete dynamical analysis of a neocortical network model. Nonlinear Dynamics, 2020, 100, 2699-2714.	2.7	20
18	Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos, Solitons and Fractals, 2020, 137, 109782	2.5	66

Fatemeh Parastesh

#	Article	IF	CITATIONS
19	A fractional-order model for the novel coronavirus (COVID-19) outbreak. Nonlinear Dynamics, 2020, 101, 711-718.	2.7	119
20	Wave propagation and spiral wave formation in a Hindmarsh–Rose neuron model with fractional-order threshold memristor synaps. International Journal of Modern Physics B, 2020, 34, 2050157.	1.0	27
21	Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks. Chaos, Solitons and Fractals, 2020, 134, 109702.	2.5	38
22	Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity. Neurocomputing, 2020, 406, 117-126.	3.5	31
23	Observation of chimera patterns in a network of symmetric chaotic finance systems. Communications in Theoretical Physics, 2020, 72, 105003.	1.1	5
24	Detecting chimeras by eigenvalue decomposition of the bivariate local order parameter. Europhysics Letters, 2020, 130, 28003.	0.7	4
25	Transitions from chimeras to coherence: An analytical approach by means of the coherent stability function. Physical Review E, 2019, 100, 012315.	0.8	20
26	Traveling patterns in a network of memristor-based oscillators with extreme multistability. European Physical Journal: Special Topics, 2019, 228, 2123-2131.	1.2	26
27	Chimera in a network of memristor-based Hopfield neural network. European Physical Journal: Special Topics, 2019, 228, 2023-2033.	1.2	36
28	Synchronization patterns in a blinking multilayer neuronal network. European Physical Journal: Special Topics, 2019, 228, 2465-2474.	1.2	12
29	Dynamical behavior and network analysis of an extended Hindmarsh–Rose neuron model. Nonlinear Dynamics, 2019, 98, 477-487.	2.7	36
30	Synchronizability of two neurons with switching in the coupling. Applied Mathematics and Computation, 2019, 350, 217-223.	1.4	76
31	Spiral waves in externally excited neuronal network: Solvable model with a monotonically differentiable magnetic flux. Chaos, 2019, 29, 043109.	1.0	32
32	The role of coupling factors on the emergence of synchronization and chimera patterns in network of non-locally coupled pancreatic Î ² -cells. Europhysics Letters, 2019, 125, 60001.	0.7	11
33	Different properties of neuronal networks matter for the emergence of chimera states. Physics of Life Reviews, 2019, 28, 128-130.	1.5	1
34	Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media. Applied Mathematics and Computation, 2019, 354, 377-384.	1.4	36
35	Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks. European Physical Journal B, 2019, 92, 1.	0.6	50
36	Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems. Chaos, Solitons and Fractals, 2018, 110, 203-208.	2.5	36

#	Article	IF	CITATIONS
37	Nonstationary chimeras in a neuronal network. Europhysics Letters, 2018, 123, 48003.	0.7	61
38	Effects of different initial conditions on the emergence of chimera states. Chaos, Solitons and Fractals, 2018, 114, 306-311.	2.5	41
39	Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cognitive Neurodynamics, 2018, 12, 607-614.	2.3	48
40	Equivalent synchronization patterns in chaotic jerk systems. Europhysics Letters, 0, , .	0.7	0
41	An optimization method to keep synchronization features when decreasing network nodes. European Physical Journal: Special Topics, 0, , .	1.2	1