List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2507944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	13.7	702
2	Deep learning for multi-year ENSO forecasts. Nature, 2019, 573, 568-572.	13.7	546
3	Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 2013, 6, 112-116.	5.4	421
4	Pantropical climate interactions. Science, 2019, 363, .	6.0	419
5	Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, 2020, 1, 215-231.	12.2	318
6	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	12.2	197
7	How well do current climate models simulate two types of El Nino?. Climate Dynamics, 2012, 39, 383-398.	1.7	155
8	Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters, 2013, 40, 4012-4017.	1.5	143
9	Changes in the Tropical Pacific SST Trend from CMIP3 to CMIP5 and Its Implication of ENSO. Journal of Climate, 2012, 25, 7764-7771.	1.2	77
10	MJO Propagation Across the Maritime Continent: Are CMIP6 Models Better Than CMIP5 Models?. Geophysical Research Letters, 2020, 47, e2020GL087250.	1.5	77
11	Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theoretical and Applied Climatology, 2010, 100, 275-282.	1.3	76
12	Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dynamics, 2012, 39, 475-493.	1.7	75
13	Successive Modulation of ENSO to the Future Greenhouse Warming. Journal of Climate, 2008, 21, 3-21.	1.2	72
14	On the Role of SST Forcing in the 2011 and 2012 Extreme U.S. Heat and Drought: A Study in Contrasts. Journal of Hydrometeorology, 2014, 15, 1255-1273.	0.7	65
15	Improved simulation of two types of El Niño in CMIP5 models. Environmental Research Letters, 2012, 7, 034002.	2.2	60
16	The Record-Breaking Heat Wave in 2016 over South Korea and Its Physical Mechanism. Monthly Weather Review, 2018, 146, 1463-1474.	0.5	59
17	The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 257-272.	1.3	58
18	Improvement of ENSO Simulation Based on Intermodel Diversity. Journal of Climate, 2015, 28, 998-1015.	1.2	56

#	Article	IF	CITATIONS
19	Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dynamics, 2015, 45, 3103-3117.	1.7	54
20	Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Climate Dynamics, 2010, 34, 905-917.	1.7	44
21	The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Climate Dynamics, 2017, 49, 249-261.	1.7	44
22	ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophysical Research Letters, 2016, 43, 422-430.	1.5	39
23	Decadal prediction skill in the GEOS-5 forecast system. Climate Dynamics, 2014, 42, 1-20.	1.7	36
24	ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Climate Dynamics, 2014, 43, 305-318.	1.7	36
25	What controls phase-locking of ENSO to boreal winter in coupled GCMs?. Climate Dynamics, 2013, 40, 1551-1568.	1.7	34
26	Role of moist energy advection in formulating anomalous Walker Circulation associated with El Niño. Journal of Geophysical Research, 2007, 112, .	3.3	33
27	Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 2022, 12, 47-53.	8.1	32
28	Do We Need to Parameterize Mesoscale Convective Organization to Mitigate the MJOâ€Mean State Tradeâ€Off?. Geophysical Research Letters, 2019, 46, 2293-2301.	1.5	30
29	The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO. Journal of Climate, 2010, 23, 1095-1110.	1.2	28
30	Role of Maritime Continent Land Convection on the Mean State and MJO Propagation. Journal of Climate, 2020, 33, 1659-1675.	1.2	26
31	Deep learning for bias correction of MJO prediction. Nature Communications, 2021, 12, 3087.	5.8	25
32	El Niño events will intensify under global warming. Nature, 2018, 564, 192-193.	13.7	24
33	New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Climate Dynamics, 2010, 35, 331-340.	1.7	23
34	Tropical Atlantic-Korea teleconnection pattern during boreal summer season. Climate Dynamics, 2017, 49, 2649-2664.	1.7	23
35	Improvement of seasonal forecasts with inclusion of tropical instability waves on initial conditions. Climate Dynamics, 2011, 36, 1277-1290.	1.7	21
36	Role of tropical atlantic SST variability as a modulator of El Niño teleconnections. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 247-261.	1.3	21

#	Article	IF	CITATIONS
37	Climate responses in the tropical pacific associated with atlantic warming in recent decades. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 209-217.	1.3	20
38	Improvement of Initialized Decadal Predictions over the North Pacific Ocean by Systematic Anomaly Pattern Correction. Journal of Climate, 2014, 27, 5148-5162.	1.2	17
39	Seasonal-to-Interannual Prediction Skills of Near-Surface Air Temperature in the CMIP5 Decadal Hindcast Experiments. Journal of Climate, 2016, 29, 1511-1527.	1.2	17
40	A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback. Geophysical Research Letters, 2017, 44, 8576-8584.	1.5	16
41	Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming. Nature Climate Change, 2018, 8, 64-69.	8.1	16
42	Optimal Initial Perturbations for Ensemble Prediction of the Madden–Julian Oscillation during Boreal Winter. Journal of Climate, 2012, 25, 4932-4945.	1.2	14
43	Indian Ocean Feedback to the ENSO Transition in a Multimodel Ensemble. Journal of Climate, 2012, 25, 6942-6957.	1.2	14
44	An assessment of the ENSO forecast skill of GEOS-5 system. Climate Dynamics, 2014, 43, 2415-2430.	1.7	14
45	Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Monthly Weather Review, 2021, , .	0.5	14
46	Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter. Climate Dynamics, 2009, 33, 959-973.	1.7	12
47	Interâ€Basin Interaction Between Variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophysical Research Letters, 2021, 48, e2021GL093338.	1.5	10
48	A possible explanation on the changes in the spatial structure of ENSO from CMIP3 to CMIP5. Geophysical Research Letters, 2014, 41, 140-145.	1.5	9
49	Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 445-455.	1.3	9
50	Atlanticâ€Pacific SST Gradient Change Responsible for the Weakening of North Tropical Atlanticâ€ENSO Relationship due to Global Warming. Geophysical Research Letters, 2019, 46, 7574-7582.	1.5	9
51	Mechanism of skillful seasonal surface chlorophyll prediction over the southern Pacific using a global earth system model. Climate Dynamics, 2021, 56, 45-64.	1.7	9
52	A possible mechanism for El Niñoâ€like warming in response to the future greenhouse warming. International Journal of Climatology, 2011, 31, 1567-1572.	1.5	8
53	El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs. Climate Dynamics, 2012, 38, 2227-2242.	1.7	8
54	Inter-decadal variation of the Tropical Atlantic-Korea (TA-K) teleconnection pattern during boreal summer season. Climate Dynamics, 2018, 51, 2609-2621.	1.7	8

#	Article	IF	CITATIONS
55	Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 459-466.	1.3	7
56	Impact of Two Distinct Teleconnection Patterns Induced by Western Central Pacific SST Anomalies on Korean Temperature Variability during the Early Boreal Summer. Journal of Climate, 2016, 29, 743-759.	1.2	6
57	Coupled bred vectors in the tropical Pacific and their application to ENSO prediction. Progress in Oceanography, 2012, 105, 90-101.	1.5	5
58	Critical Role of Tropical North Atlantic SSTA in Boreal Summer in Affecting Subsequent ENSO Evolution. Geophysical Research Letters, 2022, 49, .	1.5	5
59	Growingâ€error correction of ensemble Kalman filter using empirical singular vectors. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2051-2060.	1.0	4
60	Future Changes in Extreme El Niño Events Modulated by North Tropical Atlantic Variability. Geophysical Research Letters, 2018, 45, 6646-6653.	1.5	4
61	Role of Sea Surface Temperature over the Kuroshio Extension Region on Heavy Rainfall Events over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 19-29.	1.3	4
62	Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction. Climate Dynamics, 2012, 39, 1727-1738.	1.7	3
63	Changes in Independency between Two Types of El Niño Events under a Greenhouse Warming Scenario in CMIP5 Models. Journal of Climate, 2015, 28, 7561-7575.	1.2	3
64	The Origin of Systematic Forecast Errors of Extreme 2020 East Asian Summer Monsoon Rainfall in GloSea5. Geophysical Research Letters, 2021, 48, e2021GL094179.	1.5	3
65	A distinct sub-seasonal modulation in the Atlantic-originated atmospheric teleconnection influence on East Asian monthly climates. Environmental Research Letters, 2021, 16, 014033.	2.2	3
66	Large-Scale Sea Surface Temperature Forcing Contributed to the 2013–17 Record-Breaking Meteorological Drought in the Korean Peninsula. Journal of Climate, 2022, 35, 3767-3783.	1.2	3
67	Importance of mean state in simulating different types of El Niño revealed by SNU coupled GCMs. Progress in Oceanography, 2013, 116, 130-141.	1.5	2
68	Role of the eastern subtropical North Pacific Ocean on the El Niño's transition processes. Climate Dynamics, 2021, 56, 1285-1301.	1.7	2
69	Interacting Interannual Variability of the Pacific and Atlantic Oceans. , 2020, , 120-152.		2
70	Rectification Feedback of High-Frequency Atmospheric Variability into Low-Frequency Zonal Flows in the Tropical Pacific. Journal of Climate, 2012, 25, 5088-5101.	1.2	1
71	Deep Learning for Predicting Winter Temperature in North China. Atmosphere, 2022, 13, 702.	1.0	1