Hugo Palmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2507373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new formalism for reference dosimetry of small and nonstandard fields. Medical Physics, 2008, 35, 5179-5186.	1.6	462
2	Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRSâ€483, the IAEA–AAPM international Code of Practice for reference and relative dose determination. Medical Physics, 2018, 45, e1123-e1145.	1.6	179
3	Dosimetry for ion beam radiotherapy. Physics in Medicine and Biology, 2010, 55, R193-R234.	1.6	163
4	Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Medical Physics, 2014, 41, 072103.	1.6	124
5	LET dependence of GafChromic films and an ion chamber in low-energy proton dosimetry. Physics in Medicine and Biology, 2010, 55, 417-433.	1.6	95
6	Detector dose response in megavoltage small photon beams. I. Theoretical concepts. Medical Physics, 2015, 42, 6033-6047.	1.6	85
7	Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: A comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations. Medical Physics, 2002, 29, 1528-1535.	1.6	84
8	Monte Carlo dosimetry study of a 6 MV stereotactic radiosurgery unit. Physics in Medicine and Biology, 1998, 43, 2755-2768.	1.6	76
9	Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiotherapy and Oncology, 2013, 109, 356-360.	0.3	74
10	Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams. Medical Physics, 1999, 26, 1874-1882.	1.6	71
11	Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams. Physics in Medicine and Biology, 2018, 63, 065007.	1.6	62
12	The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Scientific Reports, 2020, 10, 9089.	1.6	62
13	A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams. Physics in Medicine and Biology, 2004, 49, 3737-3749.	1.6	60
14	Future development of biologically relevant dosimetry. British Journal of Radiology, 2015, 88, 20140392.	1.0	55
15	Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects. Medical Physics, 2015, 42, 6048-6061.	1.6	54
16	Consistency in reference radiotherapy dosimetry: resolution of an apparent conundrum when ⁶⁰ Co is the reference quality for charged-particle and photon beams. Physics in Medicine and Biology, 2013, 58, 6593-6621.	1.6	50
17	Monte Carlo model of the Elekta SLiplus accelerator: validation of a new MLC component module in BEAM for a 6 MV beam. Physics in Medicine and Biology, 2003, 48, 371-385.	1.6	49
18	On the Monte Carlo simulation of small-field micro-diamond detectors for megavoltage photon dosimetry. Physics in Medicine and Biology, 2016, 61, L1-L10.	1.6	47

Hugo Palmans

#	Article	IF	CITATIONS
19	Beam monitor calibration in scanned lightâ€ion beams. Medical Physics, 2016, 43, 5835-5847.	1.6	46
20	Parameter dependence of theMCNPelectron transport in determining dose distributions. Medical Physics, 2002, 29, 2446-2454.	1.6	45
21	Ion recombination correction in the Clatterbridge Centre of Oncology clinical proton beam. Physics in Medicine and Biology, 2006, 51, 903-917.	1.6	45
22	Water calorimetry and ionization chamber dosimetry in an 85-MeV clinical proton beam. Medical Physics, 1996, 23, 643-650.	1.6	42
23	Ion recombination for ionization chamber dosimetry in a helical tomotherapy unit. Medical Physics, 2010, 37, 2876-2889.	1.6	42
24	Monte Carlo study of fluence perturbation effects on cavity dose response in clinical proton beams. Physics in Medicine and Biology, 1998, 43, 65-89.	1.6	40
25	Fluence correction factors in plastic phantoms for clinical proton beams. Physics in Medicine and Biology, 2002, 47, 3055-3071.	1.6	40
26	Experimentalpwallandpcelcorrection factors for ionization chambers in low-energy clinical proton beams. Physics in Medicine and Biology, 2001, 46, 1187-1204.	1.6	39
27	Experimental determination of beam quality factors,kQ, for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam. Physics in Medicine and Biology, 2006, 51, 1503-1521.	1.6	39
28	Evaluation of electromagnetic and nuclear scattering models in GATE/Geant4 for proton therapy. Medical Physics, 2019, 46, 2444-2456.	1.6	39
29	Calculated depth dose distributions for proton beams in some low-Zmaterials. Physics in Medicine and Biology, 1997, 42, 1175-1183.	1.6	36
30	Correction factors and performance of a C sealed water calorimeter. Physics in Medicine and Biology, 1999, 44, 627-646.	1.6	36
31	On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems. Physics and Imaging in Radiation Oncology, 2018, 5, 26-30.	1.2	34
32	Dose detectors, sensors, and their applications. Medical Physics, 2018, 45, e1051-e1072.	1.6	32
33	Absorbed dose beam quality correction factors for the NE2571 chamber in a 5 MV and a 10 MV photon beam. Physics in Medicine and Biology, 1999, 44, 647-663.	1.6	31
34	Radiochromic film spectroscopy of laser-accelerated proton beams using the FLUKA code and dosimetry traceable to primary standards. Laser and Particle Beams, 2011, 29, 231-239.	0.4	31
35	Implementation of dosimetry equipment and phantoms at the MedAustron light ion beam therapy facility. Medical Physics, 2018, 45, 352-369.	1.6	31
36	Perturbation factors for cylindrical ionization chambers in proton beams. Part I: corrections for gradients. Physics in Medicine and Biology, 2006, 51, 3483-3501.	1.6	30

#	Article	IF	CITATIONS
37	Assigning nonelastic nuclear interaction cross sections to Hounsfield units for Monte Carlo treatment planning of proton beams. Physics in Medicine and Biology, 2005, 50, 991-1000.	1.6	28
38	A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams (70-250 MeV) for cylindrical and spherical ion chambers. Medical Physics, 2001, 28, 2088-2095.	1.6	27
39	Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry. Physics in Medicine and Biology, 2017, 62, 9189-9206.	1.6	27
40	Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: Machine-specific, plan-class, and clinical fields. Medical Physics, 2012, 39, 1964-1970.	1.6	25
41	Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams. Physics in Medicine and Biology, 2017, 62, 3883-3901.	1.6	25
42	A GATE/Geant4 beam model for the MedAustron non-isocentric proton treatment plans quality assurance. Physica Medica, 2020, 71, 115-123.	0.4	25
43	Dosimetry using plane-parallel ionization chambers in a 75 MeV clinical proton beam. Physics in Medicine and Biology, 2002, 47, 2895-2905.	1.6	24
44	The antiproton depth–dose curve measured with alanine detectors. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 929-936.	0.6	24
45	Dose response of alanine detectors irradiated with carbon ion beams. Medical Physics, 2011, 38, 1859-1866.	1.6	24
46	Determination of the beam quality index of high-energy photon beams under nonstandard reference conditions. Medical Physics, 2012, 39, 5513-5519.	1.6	24
47	Absorbed dose calorimetry. Physics in Medicine and Biology, 2020, 65, 05TR02.	1.6	23
48	Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams. Physics in Medicine and Biology, 2006, 51, 1221-1235.	1.6	22
49	Fluence correction factors and stopping power ratios for clinical ion beams. Acta Oncológica, 2011, 50, 797-805.	0.8	22
50	Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations. Physics in Medicine and Biology, 2013, 58, 3481-3499.	1.6	22
51	An absorbed dose calorimeter for IMRT dosimetry. Metrologia, 2012, 49, S168-S173.	0.6	21
52	Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy. Radiotherapy and Oncology, 2013, 108, 99-106.	0.3	21
53	The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields. Medical Physics, 2015, 42, 400-411.	1.6	21
54	Clinical implementation and commissioning of the MedAustron Particle Therapy Accelerator for nonâ€isocentric scanned proton beam treatments. Medical Physics, 2020, 47, 380-392.	1.6	20

#	Article	IF	CITATIONS
55	Effect of Alanine Energy Response and Phantom Material on Depth Dose Measurements in Ocular Proton Beams. Technology in Cancer Research and Treatment, 2003, 2, 579-586.	0.8	19
56	Water equivalence of various materials for clinical proton dosimetry by experiment and Monte Carlo simulation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 344-347.	0.7	19
57	Ion recombination correction factor in scanned light-ion beams for absolute dose measurement using plane-parallel ionisation chambers. Physics in Medicine and Biology, 2017, 62, 5365-5382.	1.6	19
58	Commissioning of pencil beam and Monte Carlo dose engines for non-isocentric treatments in scanned proton beam therapy. Physics in Medicine and Biology, 2019, 64, 17NT01.	1.6	18
59	The influence of nuclear interactions on ionization chamber perturbation factors in proton beams: FLUKA simulations supported by a Fano test. Medical Physics, 2019, 46, 885-891.	1.6	18
60	On the effective point of measurement of cylindrical ionization chambers for proton beams and other heavy charged particle beams. Physics in Medicine and Biology, 2000, 45, L20-L22.	1.6	17
61	On charged particle equilibrium violation in external photon fields. Medical Physics, 2012, 39, 1473-1480.	1.6	17
62	Ion recombination correction in carbon ion beams. Medical Physics, 2016, 43, 4198-4208.	1.6	17
63	Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study. Physics in Medicine and Biology, 2002, 47, 421-440.	1.6	16
64	Monte carlo modelling of a clinical proton beam-line for the treatment of ocular tumours. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 562, 1005-1008.	0.7	16
65	NPL's new absorbed dose standard for the calibration of HDR192Ir brachytherapy sources. Metrologia, 2012, 49, S184-S188.	0.6	16
66	Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low―and highâ€energy clinical proton beams. Medical Physics, 2016, 43, 4122-4132.	1.6	16
67	Three-voltage linear method to determine ion recombination in proton and light-ion beams. Physics in Medicine and Biology, 2020, 65, 045015.	1.6	16
68	End-to-end tests using alanine dosimetry in scanned proton beams. Physics in Medicine and Biology, 2018, 63, 055001.	1.6	15
69	Validation of a Monte Carlo model of a NACP-02 plane-parallel ionization chamber model using electron backscatter experiments. Physics in Medicine and Biology, 2008, 53, N119-N126.	1.6	14
70	Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz. Acta Oncológica, 2010, 49, 1165-1169.	0.8	14
71	Design concept for a novel SQUID-based microdosemeter. Radiation Protection Dosimetry, 2011, 143, 427-431.	0.4	14
72	Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy. Medical Physics, 2017, 44, 4919-4927.	1.6	13

#	Article	IF	CITATIONS
73	Beam monitor calibration of a synchrotron-based scanned light-ion beam delivery system. Zeitschrift Fur Medizinische Physik, 2021, 31, 154-165.	0.6	13
74	SU-FF-T-195: Dosimetry Audit for Tomotherapy Using Alanine/EPR. Medical Physics, 2006, 33, 2093-2094.	1.6	13
75	Secondary electron fluence perturbation by high-Zinterfaces in clinical proton beams: a Monte Carlo study. Physics in Medicine and Biology, 1999, 44, 167-183.	1.6	12
76	Correction factors for ionization chamber dosimetry in CyberKnife: Machineâ€specific, planâ€class, and clinical fields. Medical Physics, 2013, 40, 011721.	1.6	12
77	Biologically Weighted Quantities in Radiotherapy: an EMRP Joint Research Project. EPJ Web of Conferences, 2014, 77, 00021.	0.1	12
78	Response of synthetic diamond detectors in proton, carbon, and oxygen ion beams. Medical Physics, 2017, 44, 5445-5449.	1.6	12
79	Dose―rather than fluenceâ€øveraged LET should be used as a singleâ€parameter descriptor of proton beam quality for radiochromic film dosimetry. Medical Physics, 2020, 47, 2289-2299.	1.6	12
80	MRâ€guided proton therapy: Impact of magnetic fields on the detector response. Medical Physics, 2021, 48, 2572-2579.	1.6	12
81	Dose determination using alanine detectors in a mixed neutron and gamma field for boron neutron capture therapy of liver malignancies. Acta Oncológica, 2011, 50, 817-822.	0.8	11
82	Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams. Physics in Medicine and Biology, 2016, 61, 6602-6619.	1.6	11
83	Dynamic lung phantom commissioning for 4D dose assessment in proton therapy. Physics in Medicine and Biology, 2019, 64, 235001.	1.6	11
84	Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry. Applied Radiation and Isotopes, 2012, 70, 1052-1057.	0.7	10
85	Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam. Physics in Medicine and Biology, 2013, 58, 5363-5380.	1.6	10
86	Comment on â€~Proton beam monitor chamber calibration'. Physics in Medicine and Biology, 2016, 61, 6585-6593.	1.6	10
87	Characterization of PTW-31015 PinPoint ionization chambers in photon and proton beams. Physics in Medicine and Biology, 2018, 63, 185020.	1.6	10
88	Characterization of EBT3 radiochromic films for dosimetry of proton beams in the presence of magnetic fields. Medical Physics, 2019, 46, 3278-3284.	1.6	10
89	An empirical method for the determination of wall perturbation factors for parallel-plate chambers in high-energy electron beams. Physics in Medicine and Biology, 2006, 51, 5167-5181.	1.6	9
90	Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams. Physics in Medicine and Biology, 2016, 61, 7623-7638.	1.6	9

#	Article	IF	CITATIONS
91	Phantom design and dosimetric characterization for multiple simultaneous cell irradiations with active pencil beam scanning. Radiation and Environmental Biophysics, 2019, 58, 563-573.	0.6	9
92	The influence of lack of reference conditions on dosimetry in pre-clinical radiotherapy with medium energy x-ray beams. Physics in Medicine and Biology, 2020, 65, 085016.	1.6	9
93	A dosimetry study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies. Physics in Medicine and Biology, 2003, 48, 1091-1107.	1.6	8
94	Analysis of dose perturbation factors of a NACP-02 ionization chamber in clinical electron beams. Physics in Medicine and Biology, 2009, 54, 307-326.	1.6	8
95	Characterization of a pixelated silicon microdosimeter in micro-beams of light ions. Radiation Measurements, 2020, 133, 106296.	0.7	8
96	Correction of the measured current of a small-gap plane-parallel ionization chamber in proton beams in the presence of charge multiplication. Zeitschrift Fur Medizinische Physik, 2021, 31, 192-202.	0.6	8
97	Experimental determination of k _Q factors for two types of ionization chambers in scanned proton beams. Physics in Medicine and Biology, 2022, 67, 055001.	1.6	8
98	Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz. Medical Physics, 2014, 41, 111706.	1.6	7
99	Reference dosimetry for light-ion beams based on graphite calorimetry. Radiation Protection Dosimetry, 2014, 161, 92-95.	0.4	7
100	Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam. Physics in Medicine and Biology, 2016, 61, 4551-4563.	1.6	7
101	Comment on "Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume―[Med. Phys. 43, 5205–5212 (2016)]. Medical Physics, 2016, 43, 6667-6667.	1.6	7
102	An analytical formalism for the assessment of dose uncertainties due to positioning uncertainties. Medical Physics, 2020, 47, 1357-1363.	1.6	7
103	Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy. Physics in Medicine and Biology, 2020, 65, 125015.	1.6	7
104	Dose calculation accuracy in particle therapy: Comparing carbon ions with protons. Medical Physics, 2021, 48, 7333-7345.	1.6	7
105	Gradient corrections for reference dosimetry using Farmerâ€ŧype ionization chambers in singleâ€ŀayer scanned proton fields. Medical Physics, 2020, 47, 6531-6539.	1.6	6
106	Results of an independent dosimetry audit for scanned proton beam therapy facilities. Zeitschrift Fur Medizinische Physik, 2021, 31, 145-153.	0.6	6
107	Characterizing Radiation Effectiveness in Ion-Beam Therapy Part II: Microdosimetric Detectors. Frontiers in Physics, 2020, 8, .	1.0	6
108	Monte Carlo simulation of a TEPC for microdosimetry of carbon ions. Radiation Physics and Chemistry, 2017, 140, 412-418.	1.4	5

#	Article	IF	CITATIONS
109	Characterization of the PTW-34089 type 147 mm diameter large-area ionization chamber for use in light-ion beams. Physics in Medicine and Biology, 2020, 65, 17NT02.	1.6	5
110	LET dependence of the response of a PTW-60019 microDiamond detector in a 62 MeV proton beam. Physica Medica, 2016, 32, 1135-1138.	0.4	4
111	EP-1467: IPEM Code of Practice for proton and ion beam dosimetry: update on work in progress. Radiotherapy and Oncology, 2017, 123, S783-S784.	0.3	4
112	Reply to "Comments on theTRSâ€483 Protocol on Small field Dosimetry―[Med. Phys. 45(12), 5666–5668 (2018)]. Medical Physics, 2018, 45, 5669-5671.	1.6	4
113	Monte Carlo computation of 3D distributions of stopping power ratios in light ion beam therapy using GATEâ€RTion. Medical Physics, 2021, 48, 2580-2591.	1.6	4
114	SUâ€EEâ€A2â€02: Present Status of IAEA/AAPM Recommendations on Small and Composite Field Dosimetry. Medical Physics, 2010, 37, 3096-3096.	1.6	4
115	Technical note: Experimental determination of the effective point of measurement of the PTWâ€31010 ionization chamber in proton and carbon ion beams. Medical Physics, 2022, 49, 675-681.	1.6	4
116	Considerations for modelling MLCs with Monte Carlo techniques. , 2000, , 458-460.		3
117	Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams. Medical Physics, 2016, 43, 4507-4513.	1.6	3
118	Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam. Physics in Medicine and Biology, 2017, 62, N134-N146.	1.6	3
119	Coupling Monte Carlo simulations with thermal analysis for correcting microdosimetric spectra from a novel micro-calorimeter. Radiation Physics and Chemistry, 2017, 140, 406-411.	1.4	3
120	Equivalent (uniform) square field sizes of flattening filter free photon beams. Physics in Medicine and Biology, 2017, 62, 7694-7713.	1.6	3
121	PO-0872: Monte Carlo calculated correction factors for a proton calorimeter in clinical proton beams. Radiotherapy and Oncology, 2018, 127, S459.	0.3	3
122	SU-E-T-408: Determination of KQ,QO-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam. Medical Physics, 2014, 41, 319-319.	1.6	3
123	Dosimetry. Series in Medical Physics and Biomedical Engineering, 2011, , 191-220.	0.1	3
124	Accelerating and improving radiochromic film calibration by utilizing the dose ratio in photon and proton beams. Medical Physics, 2022, 49, 6150-6160.	1.6	3
125	Analytical expressions for the determination of the effective water depth of an ionization chamber for clinical proton beam dosimetry. , 0, , .		2
126	Beam quality of high-energy photon beams at the Ghent University linear accelerator. Physics in Medicine and Biology, 2002, 47, L15-L18.	1.6	2

#	Article	IF	CITATIONS
127	Comments on †The effective depth of cylindrical ionization chambers in water for clinical proton beams'. Physics in Medicine and Biology, 2012, 57, 7219-7224.	1.6	2
128	PO-0790: Theoretical models for volume recombination in scanned proton beams. Radiotherapy and Oncology, 2014, 111, S56.	0.3	2
129	SP-0027: New IAEA-AAPM Code of Practice for dosimetry of small photon fields used in external beam radiotherapy. Radiotherapy and Oncology, 2016, 119, S10-S11.	0.3	2
130	Reply to Comment on †Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry'. Physics in Medicine and Biology, 2019, 64, 198002.	1.6	2
131	TH-E-BRB-05: Best in Physics (Therapy) - an International Code of Practice for the Dosimetry of Small Static Photon Fields. Medical Physics, 2012, 39, 4009-4010.	1.6	2
132	356 speaker ABSOLUTE AND RELATIVE DOSIMETRY FOR PROTONS AND IONS – CHALLENGES AND SOLUTIONS Radiotherapy and Oncology, 2011, 99, S141.	0.3	1
133	EP-1512: Influence of the incident electron beam energy on the primary dose component for FFF beams. Radiotherapy and Oncology, 2016, 119, S699.	0.3	1
134	Monte Carlo calculated correction factors for the NPL proton calorimeter. Radiation Physics and Chemistry, 2017, 140, 383-385.	1.4	1
135	Abstract ID: 169 Monte Carlo calculated correction factors for a proton calorimeter in clinical proton beams. Physica Medica, 2017, 42, 35-36.	0.4	1
136	OC-0064: A Fano test for proton beams and the influence of nuclear interactions on ionization chamber factors. Radiotherapy and Oncology, 2017, 123, S31-S32.	0.3	1
137	PO-0907 Gafchromic EBT3 film for absolute dosimetry in proton therapy based on averaging of beam quality. Radiotherapy and Oncology, 2019, 133, S482-S483.	0.3	1
138	The practical radius of a pencil beam in proton therapy. Zeitschrift Fur Medizinische Physik, 2021, 31, 166-174.	0.6	1
139	SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry. Medical Physics, 2012, 39, 3736-3737.	1.6	1
140	SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy. Medical Physics, 2014, 41, 333-333.	1.6	1
141	SUâ€Fâ€BRDâ€15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable. Medical Physics, 2015, 42, 3529-3529.	1.6	1
142	SUâ€FFâ€Tâ€408: The IAEA Initiative to Standardize Nuclear Data for Heavy Chargedâ€Particle Radiotherapy. Medical Physics, 2007, 34, 2495-2495.	1.6	1
143	EMRP Project HLT 09 $\hat{a} \in \mathcal{C}$ Metrology for radiotherapy using complex radiation fields. , 2013, , .		1
144	A study of ion chamber response compared with water calorimetry in a clinical 85 MeV proton beam. Radiotherapy and Oncology, 1995, 37, S44.	0.3	0

#	Article	IF	CITATIONS
145	Monte Carlo calculated fluence correction factors in PMMA and polystyrene phantoms in clinical proton beams. , 0, , .		0
146	105 Dependence of ionisation chamber perturbation factors and stopping power ratios on beam quality in proton beams. Radiotherapy and Oncology, 2005, 76, S56.	0.3	0
147	149 Ion recmbination for ionisation chambers in the 60 MeV proton beam of CCO. Radiotherapy and Oncology, 2005, 76, S76-S77.	0.3	0
148	NEW RECOMMENDATIONS AND FORMALISMS FOR NONSTANDARD FIELD REFERENCE DOSIMETRY. Radiotherapy and Oncology, 2009, 92, S97.	0.3	0
149	Medical Physics should adopt doubleâ€blind peer review of all manuscripts. Medical Physics, 2010, 37, 5151-5154.	1.6	0
150	1134 poster REVIEW OF CORRECTION FACTORS FOR REFERENCE DOSIMETRY OF SMALL AND COMPOSITE FIELDS. Radiotherapy and Oncology, 2011, 99, S422-S423.	0.3	0
151	1425 poster LASER-PLASMA ACCELERATION OF PARTICLES FOR PROTON AND ION-BEAM RADIOTHERAPY: AN UPDATE FROM THE LIBRA CONSORTIUM. Radiotherapy and Oncology, 2011, 99, S530.	0.3	0
152	1112 poster A NOVEL DETECTOR FOR THE MEASUREMENT OF MICRODOSI-METRIC SPECTRA FOR PROTONS AND LIGHT IONS. Radiotherapy and Oncology, 2011, 99, S414.	0.3	0
153	49 speaker ADVANCES IN REFERENCE DOSIMETRY – WHERE DO WE GO NEXT?. Radiotherapy and Oncology, 2011, 99, S21.	0.3	0
154	966 poster PLASTIC-WATER PHANTOMS IN CLINICAL PROTON DOSIMETRY. Radiotherapy and Oncology, 2011, 99, S367.	0.3	0
155	Development of an Experimental Beam-line for Radiobiological Studies Relevant to Particle Radiotherapy. Clinical Oncology, 2011, 23, S37.	0.6	0
156	Poster - Thur Eve - 46: The upcoming international code of practice for small static photon field dosimetry. Medical Physics, 2012, 39, 4633-4633.	1.6	0
157	PO-0800: Geant4 Monte Carlo simulations of a microdosimetric Tissue Equivalent Proportional Counter for carbon ion therapy. Radiotherapy and Oncology, 2014, 111, S59-S60.	0.3	0
158	SP-0442: Dosimetry of small fields: Present status and future guidelines by IAEA. Radiotherapy and Oncology, 2014, 111, S175.	0.3	0
159	Metrology for radiotherapy using complex radiation fields – EMRP Project. Physica Medica, 2014, 30, e23.	0.4	0
160	PO-0804: Characterisation of a graphite calorimeter in proton pencil beams. Radiotherapy and Oncology, 2014, 111, S61-S62.	0.3	0
161	EP-1461: Monte Carlo simulations of direct energy deposition in a novel microcalorimeter. Radiotherapy and Oncology, 2014, 111, S146.	0.3	0
162	An introduction to metrology for radiotherapy using complex radiation fields – HLTO9 EMRP Project. Physica Medica, 2015, 31, e49.	0.4	0

#	Article	IF	CITATIONS
163	Calorimetry, ionometry and solid state dosimetry in scanned light-ion beams. Physica Medica, 2015, 31, e50.	0.4	0
164	OC-0159: Fluence correction factors for graphite calorimetry in clinical proton beams using Geant4. Radiotherapy and Oncology, 2015, 115, S77-S78.	0.3	0
165	Investigating ionisation cluster size distribution due to sub-1 keV electrons in view of Heisenberg's Uncertainty. Journal of Physics: Conference Series, 2015, 633, 012002.	0.3	0
166	Alanine as a Dose Verification Tool for Carbon Ion In-Vivo Irradiation. Radiotherapy and Oncology, 2016, 118, S6.	0.3	0
167	EP-1498: LET dependence of the PTW-60019 microDiamond detector response in particle beams. Radiotherapy and Oncology, 2016, 119, S692.	0.3	0
168	Geant4 coupled with Comsol heat transfer simulations to determine correction factors of a novel micro-calorimeter. Radiotherapy and Oncology, 2016, 118, S40-S41.	0.3	0
169	OC-0065: Ion recombination in scanned light-ion beams combining Boag's and Jaffé's theory. Radiotherapy and Oncology, 2017, 123, S32.	0.3	0
170	OC-0226: Towards consistency of TPS dose calculations: converting dose to medium to dose to water. Radiotherapy and Oncology, 2017, 123, S112-S113.	0.3	0
171	PO-0806: Dosimetric end-to-end test procedures using alanine dosimetry in scanned proton beam therapy. Radiotherapy and Oncology, 2017, 123, S430.	0.3	0
172	EP-1450: Implementation of dosimetry equipment and phantoms in clinical practice of light ion beam therapy. Radiotherapy and Oncology, 2017, 123, S773-S774.	0.3	0
173	OC-0530: Equivalent uniform square field sizes of machine specific reference fields in FFF beams. Radiotherapy and Oncology, 2017, 123, S280-S281.	0.3	0
174	OC-0339: Water calorimetry in a pulsed PBS proton beam. Radiotherapy and Oncology, 2017, 123, S177-S178.	0.3	0
175	EP-1556: Dosimetric commissioning of a TPS for a synchrotron-based proton PBS delivery system. Radiotherapy and Oncology, 2017, 123, S838.	0.3	0
176	OC-0149: Lateral response heterogeneity of Bragg peak ion chambers for narrow-beam photon &proton dosimetry. Radiotherapy and Oncology, 2017, 123, S72-S73.	0.3	0
177	46. Medical commissioning of a Light Ion Beam Therapy facility: The MedAustron experience of starting up using innovative technology. Physica Medica, 2017, 44, 23.	0.4	0
178	OC-0078: A formalism for the assessment of do simetric uncertainties due to positioning uncertainties. Radiotherapy and Oncology, 2018, 127, S38.	0.3	0
179	SP-0640: Photon dosimetry protocols: what is new?. Radiotherapy and Oncology, 2018, 127, S339-S340.	0.3	0
180	SP-0238 TRS 483: past, present and future. Radiotherapy and Oncology, 2019, 133, S118-S119.	0.3	0

#	Article	IF	CITATIONS
181	PO-1014 Novel independent dosimetry audit based on end-to-end testing in proton beam therapy Radiotherapy and Oncology, 2019, 133, S560-S561.	0.3	0
182	EP-1789 Repetitive use of TLD-100 without annealing for imaging doses in radiotherapy. Radiotherapy and Oncology, 2019, 133, S968.	0.3	0
183	SP-0237 Clinical application of kQ factors for reference dosimetry in flattening filter free (FFF) photon beams. Radiotherapy and Oncology, 2019, 133, S118.	0.3	0
184	PO-0977 Improved 4D proton dosimetry via correlation with beam delivery details using log-files. Radiotherapy and Oncology, 2019, 133, S533-S534.	0.3	0
185	Reply to comment on â€~Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry'. Physics in Medicine and Biology, 2021, 66, 168001.	1.6	0
186	SU-FF-T-87: An Empirical Method for the Determination of Wall Perturbation Factors for Parallel-Plate Chambers in High Energy Electron Beams. Medical Physics, 2006, 33, 2068-2068.	1.6	0
187	WE-E-BRB-09: TLD-100, Alanine, and Ionization Chamber Dosimetric Measurements in Small Megavoltage Photon Fields. Medical Physics, 2011, 38, 3817-3818.	1.6	0
188	SU-C-137-05: Reference Dosimetry for An 80 MeV/n Carbon Ion Beam Based On Graphite Calorimetry. Medical Physics, 2013, 40, 85-85.	1.6	0
189	Metrology for radiotherapy using complex radiation fields $\hat{a} \in HLTO9$ EMRP Project. , 2015, , .		0
190	SU‣â€Tâ€198: Comparison Between a PTW MicroDiamond Dosimeter and a Markus Chamber in a 62 MeV/n Carbon Ion Beam. Medical Physics, 2015, 42, 3377-3377.	1.6	0
191	SU-D-BRC-06: Experimental and Monte Carlo Studies of Fluence Corrections for Graphite Calorimetry in Proton Therapy. Medical Physics, 2016, 43, 3337-3337.	1.6	0
192	Light-Ion Beam Dosimetry. , 2017, , 301-328.		0
193	Determination of beam quality correction factors for the Roos plane-parallel ionisation chamber exposed to very high energy electron (VHEE) beams using Geant4. Physics in Medicine and Biology, 2022, 67, 065011.	1.6	0