
Wanting Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2507001/publications.pdf Version: 2024-02-01

WANTING MAD

#	Article	IF	CITATIONS
1	Synthesis of Novel Glycolipid Mimetics of Heparan Sulfate and Their Application in Colorectal Cancer Treatment in a Mouse Model. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
2	Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor. Nature Communications, 2022, 13, .	12.8	66
3	Long-range exciton diffusion in a non-fullerene acceptor: approaching the incoherent limit. Journal of Materials Chemistry C, 2021, 9, 1419-1428.	5.5	15
4	Computational investigations of allostery in aromatic amino acid biosynthetic enzymes. Biochemical Society Transactions, 2021, 49, 415-429.	3.4	3
5	Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. Journal of the American Chemical Society, 2020, 142, 1311-1320.	13.7	18
6	Diverse allosteric componentry and mechanisms control entry into aromatic metabolite biosynthesis. Current Opinion in Structural Biology, 2020, 65, 159-167.	5.7	11
7	The Synthesis and Antiâ€tumour Properties of Poly Ethoxy Ethyl Glycinamide (PEEâ^'G) Scaffolds with Multiple PDâ€l Peptides Attached. ChemMedChem, 2020, 15, 1128-1138.	3.2	4
8	Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to CNS receptors. European Journal of Medicinal Chemistry, 2020, 201, 112420.	5.5	12
9	Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2. MSphere, 2020, 5, .	2.9	24
10	A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2020, 295, 6252-6262.	3.4	13
11	Extracellular Electron Transfer: Respiratory or Nutrient Homeostasis?. Journal of Bacteriology, 2020, 202, .	2.2	14
12	Chemokine-Binding Proteins Encoded by Parapoxvirus of Red Deer of New Zealand Display Evidence of Gene Duplication and Divergence of Ligand Specificity. Frontiers in Microbiology, 2019, 10, 1421.	3.5	8
13	Acetyl-CoA-mediated activation of Mycobacterium tuberculosis isocitrate lyase 2. Nature Communications, 2019, 10, 4639.	12.8	23
14	Structure of F 1 -ATPase from the obligate anaerobe Fusobacterium nucleatum. Open Biology, 2019, 9, 190066.	3.6	3
15	Hinge Twists and Population Shifts Deliver Regulated Catalysis for ATP-PRT in Histidine Biosynthesis. Biophysical Journal, 2019, 116, 1887-1897.	0.5	3
16	Functional characterization of BcrR: a one-component transmembrane signal transduction system for bacitracin resistance. Microbiology (United Kingdom), 2019, 165, 475-487.	1.8	7
17	Structure of the NDH-2 – HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 482-490.	1.0	20
18	Synthesis of sulfamide analogues of deoxthymidine monophosphate as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydrate Research, 2018, 457, 32-40.	2.3	9

WANTING JIAO

#	Article	IF	CITATIONS
19	A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase. Biochemical Journal, 2018, 475, 247-260.	3.7	12
20	â€~Tethering' fragment-based drug discovery to identify inhibitors of the essential respiratory membrane protein type II NADH dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2239-2243.	2.2	10
21	The mechanism of catalysis by type-II NADH:quinone oxidoreductases. Scientific Reports, 2017, 7, 40165.	3.3	45
22	Antiâ€Müllerian hormone signaling is influenced by Follistatin 288, but not 14 other transforming growth factor beta superfamily regulators. Molecular Reproduction and Development, 2017, 84, 626-637.	2.0	7
23	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiology Spectrum, 2017, 5, .	3.0	89
24	Role of Alanine Racemase Mutations in Mycobacterium tuberculosis <scp>d</scp> -Cycloserine Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
25	Crystal structure of type II NADH:quinone oxidoreductase from <i>Caldalkalibacillus thermarum</i> with an improved resolution of 2.15â€Ã Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 541-549.	0.8	10
26	Quaternary structure is an essential component that contributes to the sophisticated allosteric regulation mechanism in a key enzyme from Mycobacterium tuberculosis. PLoS ONE, 2017, 12, e0180052.	2.5	18
27	Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using á´Amino Acids. PLoS ONE, 2016, 11, e0152723.	2.5	6
28	Structural plasticity and inÂvivo activity of Cas1 from the typeÂl-F CRISPR–Cas system. Biochemical Journal, 2016, 473, 1063-1072.	3.7	8
29	Exploring the structure of glutamate racemase from <i>Mycobacterium tuberculosis</i> as a template for anti-mycobacterial drug discovery. Biochemical Journal, 2016, 473, 1267-1280.	3.7	17
30	A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin. PLoS ONE, 2016, 11, e0168007.	2.5	18
31	Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity. Structure, 2015, 23, 1199-1213.	3.3	28
32	Molecular Mechanism of CCAAT-Enhancer Binding Protein Recruitment by the TRIB1 Pseudokinase. Structure, 2015, 23, 2111-2121.	3.3	93
33	Substrate-mediated control of the conformation of an ancillary domain delivers a competent catalytic site for N -acetylneuraminic acid synthase. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2054-2066.	2.6	2
34	Structure of the bacterial type <scp>II NADH</scp> dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Molecular Microbiology, 2014, 91, 950-964.	2.5	103
35	Probing the determinants of phosphorylated sugar-substrate binding for human sialic acid synthase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2257-2264.	2.3	4
36	Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed Rates. ACS Chemical Biology, 2013, 8, 2388-2393.	3.4	164

WANTING JIAO

#	Article	IF	CITATIONS
37	Three Sites and You Are Out: Ternary Synergistic Allostery Controls Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis. Journal of Molecular Biology, 2013, 425, 1582-1592.	4.2	38
38	Arg314 Is Essential for Catalysis by <i>N</i> -Acetyl Neuraminic Acid Synthase from <i>Neisseria meningitidis</i> . Biochemistry, 2013, 52, 2609-2619.	2.5	9
39	New Tripeptideâ€Based Macrocyclic Calpain Inhibitors Formed by <i>N</i> â€Alkylation of Histidine. Chemistry and Biodiversity, 2012, 9, 2473-2484.	2.1	17
40	Dynamic Cross-Talk among Remote Binding Sites: The Molecular Basis for Unusual Synergistic Allostery. Journal of Molecular Biology, 2012, 415, 716-726.	4.2	39
41	Using a Combination of Computational and Experimental Techniques to Understand the Molecular Basis for Protein Allostery. Advances in Protein Chemistry and Structural Biology, 2012, 87, 391-413.	2.3	11
42	An Extended β7α7 Substrate-Binding Loop Is Essential for Efficient Catalysis by 3-Deoxy- <scp>d</scp> - <i>manno</i> -Octulosonate 8-Phosphate Synthase. Biochemistry, 2011, 50, 9318-9327.	2.5	5
43	Synthesis and evaluation of dual site inhibitors of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5092-5097.	2.2	13
44	Potent Inhibitors of a Shikimate Pathway Enzyme from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 16197-16207.	3.4	37
45	Synergistic Allostery, a Sophisticated Regulatory Network for the Control of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2010, 285, 30567-30576.	3.4	63
46	Molecular Modeling Studies of Peptide Inhibitors Highlight the Importance of Conformational Prearrangement for Inhibition of Calpain. Biochemistry, 2010, 49, 5533-5539.	2.5	7
47	Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. , 0, , 295-316.		4