List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2506954/publications.pdf Version: 2024-02-01

		1163	1250
321	54,788	111	226
papers	citations	h-index	g-index
324	324	324	28498
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 1997, 386, 698-702.	13.7	2,992
2	Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 2003, 300, 1560-1563.	6.0	2,921
3	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	8.1	1,675
4	Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 2002, 83, 214-231.	4.6	1,647
5	China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2, 122-129.	11.5	1,636
6	Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research, 2001, 106, 20069-20083.	3.3	1,244
7	The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1228-1249.	2.7	1,178
8	Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 2014, 509, 600-603.	13.7	1,054
9	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	12.2	889
10	Surface Urban Heat Island Across 419 Global Big Cities. Environmental Science & Technology, 2012, 46, 696-703.	4.6	864
11	Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1072-1087.	2.7	855
12	Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35, 1380-1393.	2.7	833
13	Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sensing, 2013, 5, 927-948.	1.8	748
14	The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33, 481-486.	2.7	746
15	Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9540-9544.	3.3	709
16	Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research, 1998, 103, 32257-32275.	3.3	708
17	Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect. Science, 2002, 296, 1687-1689.	6.0	672
18	Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 2001, 45, 184-190.	1.3	646

#	Article	IF	CITATIONS
19	Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 2006, 33, .	1.5	631
20	Evaluation of terrestrial carbon cycle models for their response to climate variability and to <scp><scp>CO₂</scp> trends. Global Change Biology, 2013, 19, 2117-2132.</scp>	4.2	617
21	Detection and attribution of vegetation greening trend in China over the last 30Âyears. Global Change Biology, 2015, 21, 1601-1609.	4.2	597
22	On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 1994, 49, 200-211.	4.6	587
23	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	1.3	587
24	A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14784-14789.	3.3	568
25	Retrieval of canopy biophysical variables from bidirectional reflectance. Remote Sensing of Environment, 2003, 84, 1-15.	4.6	545
26	Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 2004, 89, 281-308.	4.6	522
27	Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2915-2919.	3.3	501
28	Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013, 3, 581-586.	8.1	485
29	Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501, 88-92.	13.7	482
30	Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 2018, 1, 44-50.	11.5	460
31	The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33, 481-486.	2.7	449
32	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	5.8	414
33	Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9299-9304.	3.3	404
34	Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. Journal of Climate, 2013, 26, 6801-6843.	1.2	398
35	Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E185-92.	3.3	389
36	Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6, 6911.	5.8	384

#	Article	IF	CITATIONS
37	Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18110-18115.	3.3	379
38	Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4820-4823.	3.3	376
39	Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. Journal of Geophysical Research, 2008, 113, .	3.3	363
40	Widespread decline of Congo rainforest greenness in the past decade. Nature, 2014, 509, 86-90.	13.7	351
41	Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1804-1817.	2.7	341
42	Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomy for Sustainable Development, 2000, 20, 3-22.	0.8	337
43	Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 565-570.	3.3	334
44	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	8.1	323
45	A review on the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology, 1989, 45, 1-153.	1.9	316
46	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	3.4	316
47	Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 2003, 84, 393-410.	4.6	307
48	MODIS leaf area index products: from validation to algorithm improvement. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1885-1898.	2.7	291
49	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	13.7	284
50	Changes in satelliteâ€derived spring vegetation greenâ€up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 2013, 19, 881-891.	4.2	276
51	Amazon forests did not greenâ€up during the 2005 drought. Geophysical Research Letters, 2010, 37, .	1.5	275
52	Largeâ€scale variations in the vegetation growing season and annual cycle of atmospheric <scp><scp>CO₂</scp></scp> at high northern latitudes from 1950 to 2011. Global Change Biology, 2013, 19, 3167-3183.	4.2	273
53	Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16041-16046.	3.3	259
54	Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 2020, 6, eaax0255.	4.7	258

#	Article	IF	CITATIONS
55	Recent change of vegetation growth trend in China. Environmental Research Letters, 2011, 6, 044027.	2.2	255
56	Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. Journal of Geophysical Research, 1998, 103, 32239-32256.	3.3	251
57	Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sensing of Environment, 2006, 104, 88-95.	4.6	249
58	The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment, 2006, 105, 98-114.	4.6	243
59	Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. Journal of Geophysical Research, 1998, 103, 6145-6160.	3.3	231
60	Variability of the Seasonally Integrated Normalized Difference Vegetation Index Across the North Slope of Alaska in the 1990s. International Journal of Remote Sensing, 2003, 24, 1111-1117.	1.3	231
61	Optical remote sensing of vegetation: Modeling, caveats, and algorithms. Remote Sensing of Environment, 1995, 51, 169-188.	4.6	230
62	Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 2016, 6, 75-78.	8.1	230
63	Global impacts of the 1980s regime shift. Global Change Biology, 2016, 22, 682-703.	4.2	225
64	Coupling of the Common Land Model to the NCAR Community Climate Model. Journal of Climate, 2002, 15, 1832-1854.	1.2	224
65	Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters, 2016, 11, 084001.	2.2	223
66	Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: A modeling study. Remote Sensing of Environment, 1992, 41, 85-103.	4.6	215
67	Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 2004, 91, 114-127.	4.6	206
68	Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	200
69	Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Clobal and Planetary Change, 2003, 39, 201-213.	1.6	199
70	Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sensing of Environment, 1996, 58, 201-214.	4.6	197
71	Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sensing, 2016, 8, 460.	1.8	194
72	Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9, 426.	5.8	190

#	Article	IF	CITATIONS
73	An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 60-64.	1.4	189
74	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	1.3	189
75	Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: proposition of the CEOS-BELMANIP. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1794-1803.	2.7	187
76	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	8.1	183
77	Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters, 2005, 32, .	1.5	179
78	Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	175
79	Multiscale analysis and validation of the MODIS LAI productl. Uncertainty assessment. Remote Sensing of Environment, 2002, 83, 414-430.	4.6	174
80	Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 1855-1865.	2.7	161
81	Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36, 1266-1281.	2.7	160
82	Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, 2008, 148, 1193-1209.	1.9	156
83	Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements. Remote Sensing, 2016, 8, 359.	1.8	153
84	Evaluation of the Utility of Satellite-Based Vegetation Leaf Area Index Data for Climate Simulations. Journal of Climate, 2001, 14, 3536-3550.	1.2	152
85	Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 2584-2597.	2.7	151
86	Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 751-776.	0.8	151
87	Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 2013, 178-179, 21-30.	1.9	150
88	Characterization and intercomparison of global moderate resolution leaf area index (LAI) products: Analysis of climatologies and theoretical uncertainties. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 529-548.	1.3	149
89	Inconsistencies of interannual variability and trends in longâ€ŧerm satellite leaf area index products. Global Change Biology, 2017, 23, 4133-4146.	4.2	149
90	Analysis of leaf area index products from combination of MODIS Terra and Aqua data. Remote Sensing of Environment, 2006, 104, 297-312.	4.6	147

#	Article	IF	CITATIONS
91	Human-induced greening of the northern extratropical land surface. Nature Climate Change, 2016, 6, 959-963.	8.1	145
92	Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, 2018, 8, 1092-1096.	8.1	145
93	Variations in atmospheric CO ₂ growth rates coupled with tropical temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13061-13066.	3.3	144
94	Impact of Earth Greening on the Terrestrial Water Cycle. Journal of Climate, 2018, 31, 2633-2650.	1.2	142
95	Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951.	4.7	141
96	The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophysical Research Letters, 2003, 30, .	1.5	140
97	Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000-2005. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1829-1842.	2.7	140
98	Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over the last three decades. Remote Sensing of Environment, 2014, 144, 28-41.	4.6	140
99	Satellite-based identification of linked vegetation index and sea surface temperature Anomaly areas from 1982-1990 for Africa, Australia and South America. Geophysical Research Letters, 1996, 23, 729-732.	1.5	138
100	Changes in Vegetation Growth Dynamics and Relations with Climate over China's Landmass from 1982 to 2011. Remote Sensing, 2014, 6, 3263-3283.	1.8	133
101	Radiative transfer in vegetation canopies with anisotropic scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 39, 115-129.	1.1	132
102	Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecological Engineering, 2015, 82, 276-289.	1.6	131
103	Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari. Remote Sensing of Environment, 2002, 83, 232-243.	4.6	129
104	Canopy spectral invariants for remote sensing and model applications. Remote Sensing of Environment, 2007, 106, 106-122.	4.6	129
105	Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environmental Research Letters, 2012, 7, 014026.	2.2	126
106	Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40, 115-130.	2.7	122
107	Interannual covariability in Northern Hemisphere air temperatures and greenness associated with El Niño-Southern Oscillation and the Arctic Oscillation. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	122
108	Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. Journal of Geophysical Research, 2003, 108, .	3.3	120

#	Article	IF	CITATIONS
109	Physical Climate Response to a Reduction of Anthropogenic Climate Forcing. Earth Interactions, 2010, 14, 1-11.	0.7	118
110	Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982–2009. Remote Sensing, 2013, 5, 1484-1497.	1.8	117
111	Generating global Leaf Area Index from Landsat: Algorithm formulation and demonstration. Remote Sensing of Environment, 2012, 122, 185-202.	4.6	115
112	Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology and Evolution, 2018, 2, 1428-1435.	3.4	114
113	Atmospheric effects and spectral vegetation indices. Remote Sensing of Environment, 1994, 47, 390-402.	4.6	113
114	Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. Journal of Geophysical Research, 2004, 109, .	3.3	111
115	Has the advancing onset of spring vegetation greenâ€up slowed down or changed abruptly over the last three decades?. Global Ecology and Biogeography, 2015, 24, 621-631.	2.7	111
116	Investigation of product accuracy as a function of input and model uncertainties. Remote Sensing of Environment, 2001, 78, 299-313.	4.6	110
117	Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Global Change Biology, 2003, 9, 1005-1021.	4.2	110
118	Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory. Remote Sensing of Environment, 2008, 112, 4333-4343.	4.6	110
119	Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 2018, 11, 739-743.	5.4	110
120	Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agricultural and Forest Meteorology, 2013, 178-179, 31-45.	1.9	108
121	A three-dimensional radiative transfer method for optical remote sensing of vegetated land surfaces. Remote Sensing of Environment, 1992, 41, 105-121.	4.6	103
122	Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sensing of Environment, 2014, 151, 44-56.	4.6	103
123	Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agricultural and Forest Meteorology, 1991, 55, 323-344.	1.9	101
124	Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 2387-2401.	2.7	99
125	Nitrogen Controls on Climate Model Evapotranspiration. Journal of Climate, 2002, 15, 278-295.	1.2	99
126	Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sensing of Environment, 2003, 84, 143-159.	4.6	99

#	Article	IF	CITATIONS
127	The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 241-253.	2.7	98
128	Temperature and Snow-Mediated Moisture Controls of Summer Photosynthetic Activity in Northern Terrestrial Ecosystems between 1982 and 2011. Remote Sensing, 2014, 6, 1390-1431.	1.8	98
129	Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements. Remote Sensing of Environment, 2008, 112, 35-50.	4.6	97
130	Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. Journal of Geophysical Research, 2002, 107, ACL 4-1-ACL 4-14.	3.3	95
131	Comment on "Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009â€: Science, 2011, 333, 1093-1093.	6.0	95
132	Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172.	5.8	95
133	Radiative transfer in three dimensional leaf canopies. Transport Theory and Statistical Physics, 1990, 19, 205-250.	0.4	93
134	Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15591-15596.	3.3	92
135	Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests. Remote Sensing of Environment, 2003, 85, 410-423.	4.6	90
136	Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environmental Research Letters, 2015, 10, 064014.	2.2	90
137	Multiscale analysis and validation of the MODIS LAI productII. Sampling strategy. Remote Sensing of Environment, 2002, 83, 431-441.	4.6	89
138	Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecology, 2015, 30, 1599-1611.	1.9	88
139	The Relation between the North Atlantic Oscillation and SSTs in the North Atlantic Basin. Journal of Climate, 2004, 17, 4752-4759.	1.2	86
140	Analysis of a multiyear global vegetation leaf area index data set. Journal of Geophysical Research, 2002, 107, ACL 14-1.	3.3	85
141	Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sensing of Environment, 2008, 112, 4318-4332.	4.6	85
142	Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: Classification methods and sensitivities to errors. International Journal of Remote Sensing, 2003, 24, 1997-2016.	1.3	83
143	Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, 2019, 25, 2382-2395.	4.2	83
144	Valuing ecosystem services: A shadow price for net primary production. Ecological Economics, 2007, 64, 454-462.	2.9	82

#	Article	IF	CITATIONS
145	Arctic greening from warming promotes declines in caribou populations. Science Advances, 2017, 3, e1601365.	4.7	81
146	Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, 2017, 1, 1649-1654.	3.4	79
147	Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies. Journal of Geophysical Research, 1998, 103, 6133-6144.	3.3	73
148	Seasonally different response of photosynthetic activity to daytime and nightâ€ŧime warming in the Northern Hemisphere. Global Change Biology, 2015, 21, 377-387.	4.2	72
149	Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology, 2007, 13, 67-77.	4.2	71
150	Generating Global Products of LAI and FPAR From SNPP-VIIRS Data: Theoretical Background and Implementation. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 2119-2137.	2.7	71
151	Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degradation and Development, 2019, 30, 1620-1631.	1.8	71
152	An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sensing of Environment, 2018, 209, 134-151.	4.6	70
153	Invertibility of a 1-D discrete ordinates canopy reflectance model. Remote Sensing of Environment, 1994, 48, 89-105.	4.6	69
154	Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model. Remote Sensing of Environment, 1996, 58, 115-130.	4.6	68
155	Stochastic Modeling of Radiation Regime in Discontinuous Vegetation Canopies. Remote Sensing of Environment, 2000, 74, 125-144.	4.6	68
156	On the measurability of change in Amazon vegetation from MODIS. Remote Sensing of Environment, 2015, 166, 233-242.	4.6	67
157	Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Science Advances, 2020, 6, .	4.7	67
158	The effect of growing season and summer greenness on northern forests. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	66
159	Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environmental Research Letters, 2012, 7, 035701.	2.2	65
160	Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission. Journal of Geophysical Research, 2012, 117, .	3.3	64
161	Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2283-2298.	1.2	63
162	Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	1.8	63

#	Article	IF	CITATIONS
163	Analysis of Global LAI/FPAR Products from VIIRS and MODIS Sensors for Spatio-Temporal Consistency and Uncertainty from 2012–2016. Forests, 2018, 9, 73.	0.9	63
164	Potential gross primary productivity of terrestrial vegetation from 1982-1990. Geophysical Research Letters, 1995, 22, 2617-2620.	1.5	61
165	A new parameterization of canopy spectral response to incident solar radiation: case study with hyperspectral data from pine dominant forest. Remote Sensing of Environment, 2003, 85, 304-315.	4.6	61
166	Canopy spectral invariants. Part 1: A new concept in remote sensing of vegetation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 727-735.	1.1	60
167	Divergent Arctic-Boreal Vegetation Changes between North America and Eurasia over the Past 30 Years. Remote Sensing, 2013, 5, 2093-2112.	1.8	59
168	Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sensing, 2015, 7, 5849-5878.	1.8	59
169	Lidar remote sensing for modeling gross primary production of deciduous forests. Remote Sensing of Environment, 2004, 92, 158-172.	4.6	58
170	Decadal Variations in NDVI and Food Production in India. Remote Sensing, 2010, 2, 758-776.	1.8	58
171	Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples. Remote Sensing, 2016, 8, 563.	1.8	58
172	Where Are Global Vegetation Greening and Browning Trends Significant?. Geophysical Research Letters, 2021, 48, e2020GL091496.	1.5	58
173	Validation of Moderate Resolution Imaging Spectroradiometer leaf area index product in croplands of Alpilles, France. Journal of Geophysical Research, 2005, 110, .	3.3	57
174	On Line Validation Exercise (OLIVE): A Web Based Service for the Validation of Medium Resolution Land Products. Application to FAPAR Products. Remote Sensing, 2014, 6, 4190-4216.	1.8	56
175	Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30, 302-314.	2.7	55
176	Radiative transfer in three-dimensional atmosphere-vegetation media. Journal of Quantitative Spectroscopy and Radiative Transfer, 1993, 49, 585-598.	1.1	54
177	Measuring and modeling spectral characteristics of a tallgrass prairie. Remote Sensing of Environment, 1989, 27, 143-155.	4.6	53
178	Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, 2019, 10, 885.	5.8	53
179	Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	52
180	A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US. Remote Sensing, 2013, 5, 5926-5943.	1.8	50

#	Article	IF	CITATIONS
181	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	1.3	49
182	Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies. Remote Sensing of Environment, 1992, 42, 217-238.	4.6	48
183	MODIS Enhanced Vegetation Index data do not show greening of Amazon forests during the 2005 drought. New Phytologist, 2011, 189, 11-15.	3.5	48
184	Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote Sensing of Environment, 2017, 198, 69-84.	4.6	48
185	Global teleconnections of climate to terrestrial carbon flux. Journal of Geophysical Research, 2003, 108, .	3.3	47
186	Why Is Remote Sensing of Amazon Forest Greenness So Challenging?. Earth Interactions, 2012, 16, 1-14.	0.7	47
187	Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia. Environmental Research Letters, 2015, 10, 084005.	2.2	47
188	Performance of the MISR LAI and FPAR algorithm: a case study in Africa. Remote Sensing of Environment, 2003, 88, 324-340.	4.6	46
189	Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index. Agricultural and Forest Meteorology, 2005, 132, 344-358.	1.9	46
190	Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure. Journal of Geophysical Research, 2003, 108, .	3.3	45
191	Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 2021, 12, 983.	5.8	45
192	Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 736-750.	1.1	44
193	Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sensing of Environment, 2011, 115, 1595-1601.	4.6	44
194	The Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective. Remote Sensing, 2013, 5, 830-844.	1.8	44
195	Transport theory for a leaf canopy of finite-dimensional scattering centers. Journal of Quantitative Spectroscopy and Radiative Transfer, 1991, 46, 259-280.	1.1	42
196	El Niño-Southern Oscillation-induced variability in terrestrial carbon cycling. Journal of Geophysical Research, 2004, 109, .	3.3	42
197	Assessment of the broadleaf crops leaf area index product from the Terra MODIS instrument. Agricultural and Forest Meteorology, 2005, 135, 124-134.	1.9	42
198	Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data. Remote Sensing, 2012, 4, 303-326.	1.8	42

#	Article	IF	CITATIONS
199	Using hyperspectral vegetation indices to estimate the fraction of photosynthetically active radiation absorbed by corn canopies. International Journal of Remote Sensing, 2013, 34, 8789-8802.	1.3	42
200	Analysis of the MISR LAI/FPAR product for spatial and temporal coverage, accuracy and consistency. Remote Sensing of Environment, 2007, 107, 334-347.	4.6	41
201	Attribution of seasonal leaf area index trends in the northern latitudes with "optimally―integrated ecosystem models. Global Change Biology, 2017, 23, 4798-4813.	4.2	41
202	Radiative transfer in an anisotropically scattering vegetative medium. Agricultural and Forest Meteorology, 1987, 41, 97-121.	1.9	40
203	Physical interpretation of the correlation between multiâ€angle spectral data and canopy height. Geophysical Research Letters, 2007, 34, .	1.5	40
204	Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108.	3.3	39
205	New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nature Communications, 2021, 12, 684.	5.8	39
206	Interaction of photons in a canopy of finite-dimensional leaves. Remote Sensing of Environment, 1992, 39, 61-74.	4.6	38
207	Assessing the information content of multiangle satellite data for mapping biomes. Remote Sensing of Environment, 2002, 80, 418-434.	4.6	38
208	The importance of measurement errors for deriving accurate reference leaf area index maps for validation of moderate-resolution satellite LAI products. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1866-1871.	2.7	38
209	Climate-related vegetation characteristics derived from Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index and normalized difference vegetation index. Journal of Geophysical Research, 2004, 109, .	3.3	36
210	Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011: Assessing the impact of ENSO. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8969-8983.	1.2	35
211	Nonlinear variations of forest leaf area index over China during 1982–2010 based on EEMD method. International Journal of Biometeorology, 2017, 61, 977-988.	1.3	34
212	Identifying Climatic Controls on Ring Width: The Timing of Correlations between Tree Rings and NDVI. Earth Interactions, 2008, 12, 1-14.	0.7	33
213	Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China. Remote Sensing, 2013, 5, 845-861.	1.8	32
214	Impact of droughts on the carbon cycle in European vegetation: a probabilistic risk analysis using six vegetation models. Biogeosciences, 2014, 11, 6357-6375.	1.3	32
215	Factors controlling changes in evapotranspiration, runoff, and soil moisture over the conterminous U.S.: Accounting for vegetation dynamics. Journal of Hydrology, 2018, 565, 123-137.	2.3	32
216	Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1554-1575.	1.3	31

#	Article	IF	CITATIONS
217	The Fn method for the one-angle radiative transfer equation applied to plant canopies. Remote Sensing of Environment, 1992, 39, 213-231.	4.6	30
218	Prototyping of MISR LAI and FPAR algorithm with POLDER data over Africa. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 2402-2418.	2.7	30
219	Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009. Environmental Research Letters, 2012, 7, 024018.	2.2	30
220	Light scattering in plant canopies: The method of Successive Orders of Scattering Approximations (SOSA). Agricultural and Forest Meteorology, 1987, 39, 1-12.	1.9	29
221	Inversion of a soil bidirectional reflectance model for use with vegetation reflectance models. Journal of Geophysical Research, 1995, 100, 25497.	3.3	29
222	Optimal sampling conditions for estimating grassland parameters via reflectance. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34, 272-284.	2.7	29
223	Assessing the information content of multiangle satellite data for mapping biomes. Remote Sensing of Environment, 2002, 80, 435-446.	4.6	29
224	Performance stability of the MODIS and VIIRS LAI algorithms inferred from analysis of long time series of products. Remote Sensing of Environment, 2021, 260, 112438.	4.6	29
225	Recent Changes in Terrestrial Gross Primary Productivity in Asia from 1982 to 2011. Remote Sensing, 2013, 5, 6043-6062.	1.8	28
226	Stochastic radiative transfer model for mixture of discontinuous vegetation canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 236-262.	1.1	27
227	Evaluation of the MODIS LAI/FPAR Algorithm Based on 3D-RTM Simulations: A Case Study of Grassland. Remote Sensing, 2020, 12, 3391.	1.8	27
228	A mathematical comment on the formulae for the aggregation index and the shape index. Landscape Ecology, 2002, 17, 87-90.	1.9	26
229	Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands. Part I: Statistical Analysis. Earth Interactions, 2006, 10, 1-27.	0.7	26
230	ENVIRONMENT: Environmental Monitoring Network for India. Science, 2007, 316, 204-205.	6.0	26
231	Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS. Remote Sensing, 2014, 6, 6566-6586.	1.8	26
232	Amazon Forests' Response to Droughts: A Perspective from the MAIAC Product. Remote Sensing, 2016, 8, 356.	1.8	26
233	Was the extreme Northern Hemisphere greening in 2015 predictable?. Environmental Research Letters, 2017, 12, 044016.	2.2	25
234	A Comparative Study of Predicting DBH and Stem Volume of Individual Trees in a Temperate Forest Using Airborne Waveform LiDAR. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 2267-2271.	1.4	24

#	Article	IF	CITATIONS
235	Future greening of the Earth may not be as large as previously predicted. Agricultural and Forest Meteorology, 2020, 292-293, 108111.	1.9	24
236	A procedural approach for studying the radiation regime of infinite and truncated foliage spaces. Part I. Theoretical considerations. Agricultural and Forest Meteorology, 1985, 33, 323-337.	1.9	22
237	Regional distribution of forest height and biomass from multisensor data fusion. Journal of Geophysical Research, 2010, 115, .	3.3	22
238	A procedural approach for studying the radiation regime of infinite and truncated foliage spaces. Part II. Experimental results and discussion. Agricultural and Forest Meteorology, 1985, 34, 3-16.	1.9	21
239	Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. Part 1. Theoretical considerations. Agricultural and Forest Meteorology, 1986, 37, 189-204.	1.9	21
240	1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations. Remote Sensing, 2014, 6, 8923-8944.	1.8	21
241	Prototyping of LAI and FPAR Retrievals from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Data. Remote Sensing, 2017, 9, 370.	1.8	21
242	Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. Part II. Results and discussion. Agricultural and Forest Meteorology, 1986, 37, 205-218.	1.9	20
243	Photon transport in vegetation canopies with anisotropic scattering Part I. Scattering phase functions in one angle. Agricultural and Forest Meteorology, 1988, 42, 1-16.	1.9	20
244	Development of a remotely sensing seasonal vegetationâ€based Palmer Drought Severity Index and its application of global drought monitoring over 1982–2011. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9419-9440.	1.2	20
245	Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data. Remote Sensing, 2015, 7, 8436-8452.	1.8	19
246	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	1.5	19
247	Improving leaf area index retrieval over heterogeneous surface mixed with water. Remote Sensing of Environment, 2020, 240, 111700.	4.6	19
248	Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Communications Earth & Environment, 2022, 3, .	2.6	19
249	The hot spot of vegetation canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 40, 165-168.	1.1	18
250	Photon transport in vegetation canopies with anisotropic scattering Part II. Discrete-ordinates/exact-kernel technique for one-angle photon transport in slab geometry. Agricultural and Forest Meteorology, 1988, 42, 17-40.	1.9	18
251	Photon transport in vegetation canopies with anisotropic scattering Part IV. Discrete-ordinates/exact-kernel technique for two-angle photon transport in slab geometry. Agricultural and Forest Meteorology, 1988, 42, 101-120.	1.9	18
252	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA. Remote Sensing, 2013, 5, 284-306.	1.8	18

#	Article	IF	CITATIONS
253	Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data. Remote Sensing, 2019, 11, 1517.	1.8	18
254	An empirical approach to retrieving monthly evapotranspiration over Amazonia. International Journal of Remote Sensing, 2008, 29, 7045-7063.	1.3	17
255	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 3. Model Optimization and Testing over Continental China. Remote Sensing, 2014, 6, 3533-3553.	1.8	17
256	Reply to Comment on "Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999―by J. R. Ahlbeck. Journal of Geophysical Research, 2002, 107, ACL 7-1-ACL 7-3.	3.3	16
257	Implications of Whole-Disc DSCOVR EPIC Spectral Observations for Estimating Earth's Spectral Reflectivity Based on Low-Earth-Orbiting and Geostationary Observations. Remote Sensing, 2018, 10, 1594.	1.8	16
258	Small-Scale Drop Size Variability: Impact on Estimation of Cloud Optical Properties. Journals of the Atmospheric Sciences, 2005, 62, 2555-2567.	0.6	15
259	Response to Comment on "Surface Urban Heat Island Across 419 Global Big Cities― Environmental Science & Technology, 2012, 46, 6889-6890.	4.6	15
260	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model. Remote Sensing, 2013, 5, 202-223.	1.8	15
261	Modeling the radiation regime of a discontinuous canopy based on the stochastic radiative transport theory: Modification, evaluation and validation. Remote Sensing of Environment, 2021, 267, 112728.	4.6	15
262	Synergistic use of optical and microwave data in agrometeorological applications. Advances in Space Research, 1993, 13, 239-248.	1.2	14
263	Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets. Remote Sensing, 2013, 5, 2857-2882.	1.8	14
264	Investigating the applicability of emergent constraints. Earth System Dynamics, 2019, 10, 501-523.	2.7	14
265	Attribution of Landâ€Use/Landâ€Cover Change Induced Surface Temperature Anomaly: How Accurate Is the Firstâ€Order Taylor Series Expansion?. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005787.	1.3	14
266	A Bibliometric Visualization Review of the MODIS LAI/FPAR Products from 1995 to 2020. Journal of Remote Sensing, 2021, 2021, .	3.2	14
267	Comment on "Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg5673.	6.0	14
268	Observationally based analysis of land–atmosphere coupling. Earth System Dynamics, 2016, 7, 251-266.	2.7	13
269	Subpixel burn detection in Moderate Resolution Imaging Spectroradiometer 500-m data with ARTMAP neural networks. Journal of Geophysical Research, 2005, 110, .	3.3	12
270	Physical Climate Response to a Reduction of Anthropogenic Climate Forcing. Earth Interactions, 2010, 14, 1-11.	0.7	12

#	Article	IF	CITATIONS
271	Reply to Townsend et al.: Decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1075.	3.3	12
272	Satellite-observed changes in terrestrial vegetation growth trends across the Asia-Pacific region associated with land cover and climate from 1982 to 2011. International Journal of Digital Earth, 2016, 9, 1055-1076.	1.6	12
273	An Interplay between Photons, Canopy Structure, and Recollision Probability: A Review of the Spectral Invariants Theory of 3D Canopy Radiative Transfer Processes. Remote Sensing, 2018, 10, 1805.	1.8	12
274	Constraints to Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate. Climate, 2019, 7, 27.	1.2	12
275	Reply to Ollinger et al.: Remote sensing of leaf nitrogen and emergent ecosystem properties. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2438.	3.3	11
276	Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height. Remote Sensing, 2016, 8, 494.	1.8	11
277	A Missing Solution to the Transport Equation and Its Effect on Estimation of Cloud Absorptive Properties. Journals of the Atmospheric Sciences, 2002, 59, 3572-3585.	0.6	11
278	Modeling Terrestrial Biogenic Sources of Oxygenated Organic Emissions. Earth Interactions, 2003, 7, 1-15.	0.7	10
279	Intraseasonal Interactions between Temperature and Vegetation over the Boreal Forests. Earth Interactions, 2007, 11, 1-30.	0.7	10
280	Monitoring crop yield in USA using a satellite-based climate-variability Impact Index. , 2010, , .		10
281	Seasonal and long-term variations in leaf area of Congolese rainforest. Remote Sensing of Environment, 2022, 268, 112762.	4.6	10
282	A procedural approach for studying the radiation regime of infinite and truncated foliage spaces. Part III. Effect of leaf size and inclination distribution on nonparallel beam radiation penetration and canopy photosynthesis. Agricultural and Forest Meteorology, 1985, 34, 183-194.	1.9	9
283	Satellite data help predict terrestrial carbon sinks. Eos, 2003, 84, 502-508.	0.1	9
284	Interannual Variability of Carbon Uptake of Secondary Forests in the Brazilian Amazon (2004â€⊋014). Global Biogeochemical Cycles, 2020, 34, e2019GB006396.	1.9	9
285	Atmospheric effects in the remote sensing of surface albedo and radiation absorption by vegetation canopies. International Journal of Remote Sensing, 1993, 7, 197-222.	1.1	8
286	Application of the metabolic scaling theory and water–energy balance equation to model largeâ€scale patterns of maximum forest canopy height. Global Ecology and Biogeography, 2016, 25, 1428-1442.	2.7	8
287	Reflectance of a soybean canopy using the method of successive orders of scattering approximations (SOSA). Agricultural and Forest Meteorology, 1987, 40, 71-87.	1.9	7
288	Photon interaction cross sections for aggregations of finite-dimensional leaves. Remote Sensing of Environment, 1991, 37, 219-224.	4.6	7

#	Article	IF	CITATIONS
289	A simplified formulation of photon transport in leaf canopies with scatterers of finite dimensions. Journal of Quantitative Spectroscopy and Radiative Transfer, 1991, 46, 135-140.	1.1	7
290	The application of the principles of invariance to the radiative transfer equation in plant canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 1992, 48, 321-339.	1.1	7
291	Operational relationships between NOAA-advanced very high resolution radiometer vegetation indices and daily fraction of absorbed photosynthetically active radiation, established for Sahelian vegetation canopies. Journal of Geophysical Research, 1996, 101, 21275-21289.	3.3	7
292	Feedbacks of Vegetation on Summertime Climate Variability over the North American Grasslands. Part II: A Coupled Stochastic Model. Earth Interactions, 2006, 10, 1-30.	0.7	7
293	Finite element discrete ordinates method for radiative transfer in non-rotationally invariant scattering media: Application to the leaf canopy problem. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 40, 147-155.	1.1	6
294	Photon transport in vegetation canopies with anisotropic scattering Part III. Scattering phase functions in two angles. Agricultural and Forest Meteorology, 1988, 42, 87-99.	1.9	6
295	Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. Ecosystems, 2019, 22, 1512-1529.	1.6	6
296	Leaf Area Index and Fraction of Absorbed PAR Products from Terra and Aqua MODIS Sensors: Analysis, Validation, and Refinement. Remote Sensing and Digital Image Processing, 2010, , 603-633.	0.7	6
297	Earth Imaging From the Surface of the Moon With a DSCOVR/EPIC-Type Camera. Frontiers in Remote Sensing, 2021, 2, .	1.3	5
298	Single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies. Remote Sensing of Environment, 1986, 20, 165-182.	4.6	4
299	Monitoring 2005 corn belt yields from space. Eos, 2006, 87, 150.	0.1	4
300	The Power of Monitoring Stations and a CO2 Fertilization Effect: Evidence from Causal Relationships between NDVI and Carbon Dioxide. Earth Interactions, 2008, 12, 1-23.	0.7	4
301	Solution of an integral equation encountered in studies on radiative transfer in completely absorbing leaf canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 1988, 40, 157-164.	1.1	3
302	Improving the precision of simulated hydrologic fluxes in land surface models. Journal of Geophysical Research, 2001, 106, 14357-14368.	3.3	3
303	Monitoring Rainforest Dynamics in the Amazon with MODIS Land Products. , 2006, , .		3
304	The analysis on the accuracy of DEM retrieval by the ground lidar point cloud data extraction methods in mountain forest areas. , 2012, , .		3
305	Mapping Maximum Tree Height of the Great Khingan Mountain, Inner Mongolia Using the Allometric Scaling and Resource Limitations Model. Forests, 2019, 10, 380.	0.9	3
306	Recent wetting trend in China from 1982 to 2016 and the impacts of extreme El Niño events. International Journal of Climatology, 2020, 40, 5485-5501.	1.5	3

RANGA B MYNENI

#	Article	IF	CITATIONS
307	Green Leaf Area and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation. Springer Remote Sensing/photogrammetry, 2014, , 43-61.	0.4	3
308	Técnicas avançadas de sensoriamento remoto aplicadas ao estudo de mudanças climáticas e ao funcionamento dos ecossistemas amazônicos. Acta Amazonica, 2005, 35, 259-272.	0.3	2
309	Prototyping of LAI and FPAR Retrievals From GOES-16 Advanced Baseline Imager Data Using Global Optimizing Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6937-6950.	2.3	2
310	Vegetation Angular Signatures of Equatorial Forests From DSCOVR EPIC and Terra MISR Observations. Frontiers in Remote Sensing, 2021, 2, .	1.3	2
311	Canopy spectral invariants for remote sensing of canopy structure. , 2009, , .		1
312	A physically based approach in retrieving vegetation Leaf Area Index from Landsat surface reflectance data. , 2010, , .		1
313	Estimation of tree heights using remote sensing data and an Allometric Scaling and Resource Limitations (ASRL) model. , 2012, , .		1
314	Reply to comment by M. Lanfredi et al. to "Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999―by L. Zhou et al Journal of Geophysical Research, 2003, 108, .	3.3	0
315	Physically based methodology for generating LAI and FPAR earth system data records from AVHRR and MODIS. , 2007, , .		0
316	Retrieving 3D canopy structure from synergistic analysis of multi-angle and lidar data. , 2007, , .		0
317	Modeling recollision and escape probabilities using the stochastic radiative transfer equation. , 2010, , .		0
318	Canopy vertical structure using MODIS Bidirectional Reflectance data. , 2010, , .		0
319	A physical interpretation of the correlation between canopy albedo and nitrogen using hyperspectral data. , 2010, , .		Ο
320	The Relationship Between the Use of a Worksite Medical Home and ED Visits or Hospitalizations. Inquiry (United States), 2015, 52, 004695801560960.	0.5	0
321	Reply to Gonsamo et al.: Effect of the Eastern Atlantic-West Russia pattern on Amazon vegetation has not been demonstrated. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1056-E1056.	3.3	Ο