Zhenzhen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2506395/publications.pdf Version: 2024-02-01

ZHENZHEN VANC

#	Article	IF	CITATIONS
1	Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion. Energy and Environmental Science, 2012, 5, 6602.	15.6	446
2	CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. RSC Advances, 2011, 1, 545.	1.7	335
3	Lewis Basic Ionic Liquids atalyzed Conversion of Carbon Dioxide to Cyclic Carbonates. Advanced Synthesis and Catalysis, 2010, 352, 2233-2240.	2.1	252
4	A Protic Ionic Liquid Catalyzes CO ₂ Conversion at Atmospheric Pressure and Room Temperature: Synthesis of Quinazolineâ€2,4(1 <i>H</i> ,3 <i>H</i>)â€diones. Angewandte Chemie - International Edition, 2014, 53, 5922-5925.	7.2	213
5	Hierarchically Mesoporous <i>o</i> â€Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO ₂ Capture and Conversion. Angewandte Chemie - International Edition, 2016, 55, 9685-9689.	7.2	208
6	High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2020, 142, 4550-4554.	6.6	208
7	Equimolar CO ₂ Capture by Nâ€Substituted Amino Acid Salts and Subsequent Conversion. Angewandte Chemie - International Edition, 2012, 51, 11306-11310.	7.2	206
8	CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy and Environmental Science, 2011, 4, 3971.	15.6	205
9	Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chemistry, 2012, 14, 519.	4.6	186
10	Imidazolium-Based Ionic Liquids Catalyzed Formylation of Amines Using Carbon Dioxide and Phenylsilane at Room Temperature. ACS Catalysis, 2015, 5, 4989-4993.	5.5	173
11	Eosinâ€Yâ€Functionalized Conjugated Organic Polymers for Visibleâ€Lightâ€Driven CO ₂ Reduction with H ₂ O to CO with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 632-636.	n 7.2	162
12	Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. Journal of the American Chemical Society, 2020, 142, 6856-6860.	6.6	136
13	Lewis basic ionic liquids-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Green Chemistry, 2010, 12, 1850.	4.6	126
14	Metalated Mesoporous Poly(triphenylphosphine) with Azo Functionality: Efficient Catalysts for CO ₂ Conversion. ACS Catalysis, 2016, 6, 1268-1273.	5.5	122
15	Mesoporous nitrogen-doped carbons with high nitrogen contents and ultrahigh surface areas: synthesis and applications in catalysis. Green Chemistry, 2016, 18, 1976-1982.	4.6	120
16	Iron-catalyzed selective oxidation of sulfides to sulfoxides with the polyethylene glycol/O ₂ system. Green Chemistry, 2012, 14, 130-135.	4.6	113
17	In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system. Green Chemistry, 2013, 15, 2825.	4.6	112
18	Entropyâ€Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO ₂ Fixation. Angewandte Chemie - International Edition, 2019, 58, 5018-5022.	7.2	107

#	Article	IF	CITATIONS
19	Ionic Liquid-Catalyzed C–S Bond Construction using CO ₂ as a C1 Building Block under Mild Conditions: A Metal-Free Route to Synthesis of Benzothiazoles. ACS Catalysis, 2015, 5, 6648-6652.	5.5	105
20	Visible-Light-Driven Photoreduction of CO ₂ to CH ₄ over N,O,P-Containing Covalent Organic Polymer Submicrospheres. ACS Catalysis, 2018, 8, 4576-4581.	5.5	99
21	Methylation of C(sp ³)–H/C(sp ²)–H Bonds with Methanol Catalyzed by Cobalt System. Organic Letters, 2017, 19, 5228-5231.	2.4	94
22	Task-specific ionic liquid and CO ₂ -cocatalysed efficient hydration of propargylic alcohols to α-hydroxy ketones. Chemical Science, 2015, 6, 2297-2301.	3.7	93
23	Fluoro-functionalized polymeric ionic liquids: highly efficient catalysts for CO ₂ cycloaddition to cyclic carbonates under mild conditions. Green Chemistry, 2014, 16, 3724.	4.6	92
24	Two-in-one: construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO ₂ fixation. Chemical Communications, 2020, 56, 3309-3312.	2.2	92
25	Azoleâ€Anionâ€Based Aprotic Ionic Liquids: Functional Solvents for Atmospheric CO ₂ Transformation into Various Heterocyclic Compounds. Chemistry - an Asian Journal, 2016, 11, 2735-2740.	1.7	91
26	Efficient Cobaltâ€Catalyzed Methylation of Amines Using Methanol. Advanced Synthesis and Catalysis, 2017, 359, 4278-4283.	2.1	90
27	B(C ₆ F ₅) ₃ -catalyzed methylation of amines using CO ₂ as a C1 building block. Green Chemistry, 2015, 17, 4189-4193.	4.6	89
28	Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chemistry, 2011, 13, 2351.	4.6	87
29	Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nature Communications, 2020, 11, 1086.	5.8	87
30	Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis. Journal of the American Chemical Society, 2021, 143, 8521-8526.	6.6	85
31	Azo-functionalized microporous organic polymers: synthesis and applications in CO ₂ capture and conversion. Chemical Communications, 2015, 51, 11576-11579.	2.2	83
32	Highly mesoporous carbons derived from biomass feedstocks templated with eutectic salt ZnCl ₂ /KCl. Journal of Materials Chemistry A, 2014, 2, 19324-19329.	5.2	80
33	Enhanced Oxygen Activation Achieved by Robust Single Chromium Atom-Derived Catalysts in Aerobic Oxidative Desulfurization. ACS Catalysis, 2022, 12, 8623-8631.	5.5	78
34	Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2012, 14, 2752.	4.6	77
35	Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve Membranes. CheM, 2020, 6, 631-645.	5.8	73
36	An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction. Applied Catalysis B: Environmental, 2020, 276, 119155.	10.8	72

#	Article	IF	CITATIONS
37	Highly efficient SO2 absorption/activation and subsequent utilization by polyethylene glycol-functionalized Lewis basic ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 15832.	1.3	66
38	Highly Efficient SO ₂ Absorption and Its Subsequent Utilization by Weak Base/Polyethylene Glycol Binary System. Environmental Science & Technology, 2013, 47, 1598-1605.	4.6	64
39	Hierarchically Mesoporous <i>o</i> â€Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO ₂ Capture and Conversion. Angewandte Chemie, 2016, 128, 9837-9841.	1.6	61
40	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie - International Edition, 2019, 58, 10626-10630.	7.2	55
41	An Efficient and General Method for Formylation of Aryl Bromides with CO ₂ and Poly(methylhydrosiloxane). Chemistry - A European Journal, 2016, 22, 1097-1102.	1.7	54
42	Heteropolyanion-based ionic liquids catalysed conversion of cellulose into formic acid without any additives. Green Chemistry, 2014, 16, 4931-4935.	4.6	53
43	Mesoporous zirconium phosphonates as efficient catalysts for chemical CO ₂ fixation. Green Chemistry, 2015, 17, 795-798.	4.6	49
44	Influence of fluorination on CO ₂ adsorption in materials derived from fluorinated covalent triazine framework precursors. Journal of Materials Chemistry A, 2019, 7, 17277-17282.	5.2	47
45	Fluoro-functionalized polymeric N-heterocyclic carbene-zinc complexes: efficient catalyst for formylation and methylation of amines with CO ₂ as a C1-building block. RSC Advances, 2015, 5, 19613-19619.	1.7	46
46	Cuâ^'Ni Bimetallic Hydroxide Catalyst for Efficient Electrochemical Conversion of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemElectroChem, 2019, 6, 5797-5801.	1.7	45
47	N-Doped porous carbon nanotubes: synthesis and application in catalysis. Chemical Communications, 2017, 53, 929-932.	2.2	43
48	A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO ₂ . Chemical Communications, 2019, 55, 12475-12478.	2.2	43
49	Sinter-Resistant Nanoparticle Catalysts Achieved by 2D Boron Nitride-Based Strong Metal–Support Interactions: A New Twist on an Old Story. ACS Central Science, 2020, 6, 1617-1627.	5.3	42
50	Coordination effect-regulated CO ₂ capture with an alkali metal onium salts/crown ether system. Green Chemistry, 2014, 16, 253-258.	4.6	39
51	Rhodium-Catalyzed Formylation of Aryl Halides with CO ₂ and H ₂ . Organic Letters, 2018, 20, 5130-5134.	2.4	37
52	Magnetic base catalysts for the chemical fixation of carbon dioxide to quinazoline-2,4(1H,3H)-diones. RSC Advances, 2014, 4, 28941-28946.	1.7	36
53	Atmospheric CO ₂ promoted synthesis of N-containing heterocycles over B(C ₆ F ₅) ₃ catalyst. New Journal of Chemistry, 2016, 40, 8282-8287.	1.4	36
54	Highly Perfluorinated Covalent Triazine Frameworks Derived from a Lowâ€Temperature Ionothermal Approach Towards Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 25688-25694.	7.2	36

#	Article	IF	CITATIONS
55	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 13763-13767.	7.2	32
56	Co-catalyzed Hydrogenation of Levulinic Acid to Î ³ -Valerolactone under Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2019, 7, 18236-18241.	3.2	32
57	Ambient Temperature Graphitization Based on Mechanochemical Synthesis. Angewandte Chemie - International Edition, 2020, 59, 21935-21939.	7.2	32
58	Surpassing the Organic Cathode Performance for Lithium-Ion Batteries with Robust Fluorinated Covalent Quinazoline Networks. ACS Energy Letters, 2021, 6, 41-51.	8.8	32
59	Synthesis of metalloporphyrin-based conjugated microporous polymer spheres directed by bipyridine-type ligands. Chemical Communications, 2015, 51, 7352-7355.	2.2	30
60	Pyridine-functionalized organic porous polymers: applications in efficient CO ₂ adsorption and conversion. New Journal of Chemistry, 2017, 41, 2869-2872.	1.4	29
61	A benzoquinone-derived porous hydrophenazine framework for efficient and reversible iodine capture. Chemical Communications, 2018, 54, 12706-12709.	2.2	28
62	Mesoporous imine-based organic polymer: catalyst-free synthesis in water and application in CO ₂ conversion. Chemical Communications, 2018, 54, 7633-7636.	2.2	28
63	Entropyâ€Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO ₂ Fixation. Angewandte Chemie, 2019, 131, 5072-5076.	1.6	27
64	Benzene Ring Knitting Achieved by Ambientâ€Temperature Dehalogenation via Mechanochemical Ullmannâ€Type Reductive Coupling. Advanced Materials, 2021, 33, e2008685.	11.1	27
65	Visible-light-driven photoreduction of CO ₂ to CO over porous nitrogen-deficient carbon nitride nanotubes. Catalysis Science and Technology, 2019, 9, 2485-2492.	2.1	26
66	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9953-9958.	7.2	26
67	Proline-Catalyzed Synthesis of 5-Aryl-2-oxazolidinones from Carbon Dioxide and Aziridines Under Solvent-Free Conditions. Synthetic Communications, 2012, 42, 62-74.	1.1	25
68	Reductive cleavage of inert aryl C–O bonds to produce arenes. Chemical Communications, 2015, 51, 12212-12215.	2.2	25
69	Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency. Journal of Materials Chemistry A, 2021, 9, 4700-4706.	5.2	23
70	From Highly Purified Boron Nitride to Boron Nitrideâ€Based Heterostructures: An Inorganic Precursorâ€Based Strategy. Advanced Functional Materials, 2019, 29, 1906284.	7.8	22
71	NaZSM-5-catalyzed dimethyl carbonate synthesis via the transesterification of ethylene carbonate with methanol. Canadian Journal of Chemistry, 2011, 89, 544-548.	0.6	20
72	<i>In situ</i> Acidic Carbon Dioxide/Ethanol System for Selective Oxybromination of Aromatic Ethers Catalyzed by Copper Chloride. Advanced Synthesis and Catalysis, 2011, 353, 3187-3195.	2.1	20

#	Article	IF	CITATIONS
73	Fabrication of Ionic Covalent Triazine Framework-Linked Membranes via a Facile Sol–Gel Approach. Chemistry of Materials, 2021, 33, 3386-3393.	3.2	20
74	CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO ₂ at room temperature. New Journal of Chemistry, 2017, 41, 9250-9255.	1.4	19
75	Eosinâ€Yâ€Functionalized Conjugated Organic Polymers for Visibleâ€Lightâ€Driven CO ₂ Reductic with H ₂ O to CO with High Efficiency. Angewandte Chemie, 2019, 131, 642-646.	n 1.6	19
76	Ethanol-mediated <i>N</i> -formylation of amines with CO ₂ /H ₂ over cobalt catalysts. New Journal of Chemistry, 2018, 42, 13933-13937.	1.4	19
77	Nitrogen-doped microporous carbon materials with uniform pore diameters: Design and applications in CO2 and H2 adsorption. Microporous and Mesoporous Materials, 2020, 296, 109992.	2.2	19
78	What Fluorine Can Do in CO ₂ Chemistry: Applications from Homogeneous to Heterogeneous Systems. ChemSusChem, 2020, 13, 6182-6200.	3.6	18
79	Role of Catalytic Materials on Conversion of Sulfur Species for Room Temperature Sodium–Sulfur Battery. Energy and Environmental Materials, 2022, 5, 693-710.	7.3	18
80	Graphitic Azaâ€Fused π onjugated Networks: Construction, Engineering, and Task‧pecific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
81	Defect-Regulated Frustrated-Lewis-Pair Behavior of Boron Nitride in Ambient Pressure Hydrogen Activation. Journal of the American Chemical Society, 2022, 144, 10688-10693.	6.6	17
82	Reductive Coupling of CO ₂ , Primary Amine, and Aldehyde at Room Temperature: A Versatile Approach to Unsymmetrically <i>N</i> , <i>N</i> â€Disubstituted Formamides. Chemistry - A European Journal, 2017, 23, 9721-9725.	1.7	16
83	Cobalt-Catalyzed Synthesis of Unsymmetrically <i>N</i> , <i>N</i> -Disubstituted Formamides via Reductive Coupling of Primary Amines and Aldehydes with CO ₂ and H ₂ . Organic Letters, 2018, 20, 6622-6626.	2.4	16
84	Ionic liquid/H ₂ O-mediated synthesis of mesoporous organic polymers and their application in methylation of amines. Chemical Communications, 2017, 53, 5962-5965.	2.2	15
85	Sequential protocol for C(sp)–H carboxylation with CO2: KOtBu-catalyzed C(sp)–H silylation and KOtBu-mediated carboxylation. Science China Chemistry, 2018, 61, 449-456.	4.2	15
86	Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids. Nano Research, 2022, 15, 4792-4798.	5.8	13
87	<i>De novo</i> fabrication of multi-heteroatom-doped carbonaceous materials <i>via</i> an <i>in situ</i> doping strategy. Journal of Materials Chemistry A, 2020, 8, 4740-4746.	5.2	11
88	Electrochemically induced crystallization of amorphous materials in molten MgCl ₂ : boron nitride and hard carbon. Chemical Communications, 2020, 56, 2783-2786.	2.2	10
89	Hydrogenâ€Bondingâ€Mediated Synthesis of Atomically Thin TiO ₂ Films with Exposed (001) Facets and Applications in Fast Lithium Insertion/Extraction. Chemistry - A European Journal, 2015, 21, 14608-14613.	1.7	9
90	Polyureas derived from CO ₂ and diamines: highly efficient catalysts for C–H arylation of benzene. New Journal of Chemistry, 2017, 41, 51-55.	1.4	9

#	Article	IF	CITATIONS
91	A succinct strategy for construction of nanoporous ionic organic networks from a pyrylium intermediate. Chemical Communications, 2019, 55, 13450-13453.	2.2	9
92	Photosensitive Hyper-Cross-Linked Polymers Derived from Three-Dimensional Ringlike Arenes: Promising Catalysts for Singlet-Oxygen Generation. ACS Sustainable Chemistry and Engineering, 2020, 8, 16320-16326.	3.2	9
93	CO ₂ Chemisorption Behavior of Coordinationâ€Derived Phenolate Sorbents. ChemSusChem, 2021, 14, 2854-2859.	3.6	9
94	Mechanochemistryâ€Driven Construction of Azaâ€fused π onjugated Networks Toward Enhanced Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	9
95	Synthesis of chemicals using CO2 as a building block under mild conditions. Current Opinion in Green and Sustainable Chemistry, 2016, 1, 13-17.	3.2	8
96	Green synthesis of mesoporous MnNbO _x oxide by a liquid induced self-assembly strategy for low-temperature removal of NO _x . Chemical Communications, 2019, 55, 15073-15076.	2.2	8
97	Facile benzene reduction promoted by a synergistically coupled Cu–Co–Ce ternary mixed oxide. Chemical Science, 2020, 11, 5766-5771.	3.7	8
98	Mechanochemically Assisted Synthesis of High-Entropy Layer-Structured Dittmarite Analogues. ACS Applied Energy Materials, 2022, 5, 3290-3297.	2.5	8
99	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie, 2019, 131, 10736-10740.	1.6	7
100	Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. Journal of Membrane Science, 2021, 638, 119698.	4.1	6
101	Topotactic Synthesis of Phosphabenzeneâ€Functionalized Porous Organic Polymers: Efficient Ligands in CO 2 Conversion. Angewandte Chemie, 2019, 131, 13901-13905.	1.6	3
102	Ambient Temperature Graphitization Based on Mechanochemical Synthesis. Angewandte Chemie, 2020, 132, 22119-22123.	1.6	3
103	Perovskite Oxide–Halide Solid Solutions: A Platform for Electrocatalysts. Angewandte Chemie, 2021, 133, 10041-10046.	1.6	3
104	CO 2 Chemisorption Behavior of Coordinationâ€Derived Phenolate Sorbents. ChemSusChem, 2021, 14, 2784-2784.	3.6	2
105	Highly Perfluorinated Covalent Triazine Frameworks Derived fromÂa Lowâ€Temperature IonothermalÂApproach Towards EnhancedÂCO2 Electroreduction. Angewandte Chemie, 2021, 133, 25892.	1.6	2
106	Rücktitelbild: Hierarchically Mesoporous <i>o</i> â€Hydroxyazobenzene Polymers: Synthesis and Their Applications in CO ₂ Capture and Conversion (Angew. Chem. 33/2016). Angewandte Chemie, 2016, 128, 9948-9948.	1.6	1