
Xiaohua Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2506184/publications.pdf Version: 2024-02-01

Хилонил Ун

#	Article	IF	CITATIONS
1	Reversing the imbalance in bone homeostasis via sustained release of SIRT-1 agonist to promote bone healing under osteoporotic condition. Bioactive Materials, 2023, 19, 429-443.	15.6	12
2	Vascular Derived ECM Improves Therapeutic Index of BMPâ€2 and Drives Vascularized Bone Regeneration. Small, 2022, 18, e2107991.	10.0	16
3	Tumor Customized 2D Supramolecular Nanodiscs for Ultralong Tumor Retention and Precise Photothermal Therapy of Highly Heterogeneous Cancers. Small, 2022, 18, e2200179.	10.0	6
4	A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle. Bioactive Materials, 2021, 6, 1853-1866.	15.6	24
5	lodine Immobilized Metal–Organic Framework for NIRâ€Triggered Antibacterial Therapy on Orthopedic Implants. Small, 2021, 17, e2102315.	10.0	44
6	An orthobiologics-free strategy for synergistic photocatalytic antibacterial and osseointegration. Biomaterials, 2021, 274, 120853.	11.4	52
7	Transformation of acellular dermis matrix with dicalcium phosphate into 3D porous scaffold for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2071-2087.	3.5	8
8	lodine Immobilized Metal–Organic Framework for NIRâ€Triggered Antibacterial Therapy on Orthopedic Implants (Small 35/2021). Small, 2021, 17, 2170180.	10.0	1
9	Highly active biological dermal acellular tissue scaffold composite with human bone powder for bone regeneration. Materials and Design, 2021, 209, 109963.	7.0	4
10	Enhancing the Surface Properties of a Bioengineered Anterior Cruciate Ligament Matrix for Use with Point-of-Care Stem Cell Therapy. Engineering, 2021, 7, 153-161.	6.7	4
11	Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation. Journal of Nanobiotechnology, 2021, 19, 420.	9.1	21
12	Utility of Air Bladder-Derived Nanostructured ECM for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 553529.	4.1	1
13	Injectable Polypeptideâ€Protein Hydrogels for Promoting Infected Wound Healing. Advanced Functional Materials, 2020, 30, 2001196.	14.9	186
14	Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Science Advances, 2020, 6, .	10.3	24
15	Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Materials Science and Engineering C, 2020, 110, 110670.	7.3	67
16	Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Applied Materials & Interfaces, 2020, 12, 6840-6851.	8.0	64
17	A microparticle approach for non-viral gene delivery within 3D human mesenchymal stromal cell aggregates. Acta Biomaterialia, 2019, 95, 408-417.	8.3	13
18	VEGFâ€loaded mineralâ€coated microparticles improve bone repair and are associated with increased expression of epo and RUNXâ€2 in murine nonâ€unions. Journal of Orthopaedic Research, 2019, 37, 821-831.	2.3	20

Χιαοήμα Υμ

#	Article	IF	CITATIONS
19	Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Materials, 2019, 11, .	7.9	61
20	Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials, 2018, 161, 240-255.	11.4	46
21	Mineral binding peptides with enhanced binding stability in serum. Biomaterials Science, 2017, 5, 663-668.	5.4	4
22	Functionalization of microparticles with mineral coatings enhances non-viral transfection of primary human cells. Scientific Reports, 2017, 7, 14211.	3.3	19
23	Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery. Advanced Materials, 2017, 29, 1701255.	21.0	53
24	Endochondral Ossification in Critical-Sized Bone Defects via Readily Implantable Scaffold-Free Stem Cell Constructs. Stem Cells Translational Medicine, 2017, 6, 1644-1659.	3.3	53
25	Osteotropic Nanoscale Drug Delivery System via a Single Aspartic Acid as the Bone-Targeting Moiety. Journal of Nanoscience and Nanotechnology, 2017, 17, 1747-1752.	0.9	11
26	Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes. Water Research, 2016, 99, 122-128.	11.3	99
27	Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification. Stem Cells Translational Medicine, 2016, 5, 206-217.	3.3	80
28	Guiding Chondrogenesis and Osteogenesis with Mineral-Coated Hydroxyapatite and BMP-2 Incorporated within High-Density hMSC Aggregates for Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 30-42.	5.2	40
29	Mineral particles modulate osteo-chondrogenic differentiation of embryonic stem cell aggregates. Acta Biomaterialia, 2016, 29, 42-51.	8.3	25
30	Spatially Organized Differentiation of Mesenchymal Stem Cells within Biphasic Microparticleâ€Incorporated High Cell Density Osteochondral Tissues. Advanced Healthcare Materials, 2015, 4, 2306-2313.	7.6	29
31	How does the pathophysiological context influence delivery of bone growth factors?. Advanced Drug Delivery Reviews, 2015, 84, 68-84.	13.7	21
32	Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity. Bioresource Technology, 2015, 192, 418-423.	9.6	40
33	Biomaterials for Bone Regenerative Engineering. Advanced Healthcare Materials, 2015, 4, 1268-1285.	7.6	280
34	Occurrence and estrogenic potency of eight bisphenol analogs in sewage sludge from the U.S. EPA targeted national sewage sludge survey. Journal of Hazardous Materials, 2015, 299, 733-739.	12.4	171
35	Multilayered Inorganic Microparticles for Tunable Dual Growth Factor Delivery. Advanced Functional Materials, 2014, 24, 3082-3093.	14.9	81
36	A rapamycin-releasing perivascular polymeric sheath produces highly effective inhibition of intimal hyperplasia. Journal of Controlled Release, 2014, 191, 47-53.	9.9	34

Χιαοήμα Υμ

#	Article	IF	CITATIONS
37	3-D scaffold platform for optimized non-viral transfection of multipotent stem cells. Journal of Materials Chemistry B, 2014, 2, 8186-8193.	5.8	13
38	Covalent immobilization of collagen on titanium through polydopamine coating to improve cellular performances of MC3T3-E1 cells. RSC Advances, 2014, 4, 7185.	3.6	56
39	Modulation of host osseointegration during bone regeneration by controlling exogenous stem cell differentiation using a material approach. Biomaterials Science, 2014, 2, 242-251.	5.4	10
40	Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications. International Journal of Pharmaceutics, 2014, 475, 547-557.	5.2	81
41	The effect of fresh bone marrow cells on reconstruction of mouse calvarial defect combined with calvarial osteoprogenitor cells and collagen-apatite scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 974-983.	2.7	27
42	Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomaterialia, 2013, 9, 7308-7319.	8.3	149
43	Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface. BioMed Research International, 2013, 2013, 1-9.	1.9	7
44	Inorganic coatings for optimized non-viral transfection of stem cells. Scientific Reports, 2013, 3, 1567.	3.3	38
45	Controlling the structural organization of regenerated bone by tailoring tissue engineering scaffold architecture. Journal of Materials Chemistry, 2012, 22, 9721.	6.7	32
46	Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. Journal of Materials Science: Materials in Medicine, 2012, 23, 2177-2186.	3.6	48
47	Biomimetic collagen/apatite coating formation on Ti6Al4V substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 871-881.	3.4	47
48	Preparation and evaluation of parathyroid hormone incorporated CaP coating via a biomimetic method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 345-354.	3.4	27
49	Incorporation of bovine serum albumin into biomimetic coatings on titanium with high loading efficacy and its release behavior. Journal of Materials Science: Materials in Medicine, 2009, 20, 287-294.	3.6	36
50	Integrity of the ECM Influences the Bone Regenerative Property of ECM/Dicalcium Phosphate Composite Scaffolds. ACS Applied Bio Materials, 0, , .	4.6	1