
Kevin G Stamplecoskie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2506172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrovoltaic power generation from multiwalled carbon nanotubes. Sustainable Energy and Fuels, 2022, 6, 1141-1147.	4.9	12
2	All-Weather-Compatible Hydrovoltaic Cells Based on Al ₂ O ₃ TLC Plates. ACS Omega, 2022, 7, 2618-2623.	3.5	9
3	A vinylogous Norrish reaction as a strategy for light-mediated ring expansion. Chemical Communications, 2022, 58, 2910-2913.	4.1	1
4	FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection. Biosensors, 2022, 12, 128.	4.7	13
5	NHC-Stabilized Au ₁₀ Nanoclusters and Their Conversion to Au ₂₅ Nanoclusters. Jacs Au, 2022, 2, 875-885.	7.9	22
6	Al2O3 anchored silver and gold nanoparticles as accessible, stable, and re-usable catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128972.	4.7	9
7	Exciting clusters, what does off-resonance actually mean?. Nanoscale, 2021, 13, 242-252.	5.6	6
8	Photophysics of Ag and Au alloys of M25(SR)18 clusters. Journal of Chemical Physics, 2021, 155, 134301.	3.0	2
9	Water-Evaporation-Induced Electric Generator Built from Carbonized Electrospun Polyacrylonitrile Nanofiber Mats. ACS Applied Materials & Interfaces, 2021, 13, 50900-50910.	8.0	26
10	Shape control of silver nanoparticles and their stability on Al ₂ O ₃ . Journal of Materials Chemistry C, 2020, 8, 10755-10760.	5.5	11
11	Tunable Fractal Nanostructures for Surface-Enhanced Raman Scattering via Templated Electrodeposition of Silver on Low-Energy Surfaces. ACS Applied Nano Materials, 2020, 3, 2665-2679.	5.0	17
12	Photophysics of J-Aggregating Porphyrin-Lipid Photosensitizers in Liposomes: Impact of Lipid Saturation. Langmuir, 2020, 36, 5385-5393.	3.5	27
13	Electrokinetically-Driven Assembly of Gold Colloids into Nanostructures for Surface-Enhanced Raman Scattering. Nanomaterials, 2020, 10, 661.	4.1	11
14	Light-Activated Peptide-Based Materials for Sutureless Wound Closure. ACS Applied Materials & Interfaces, 2019, 11, 45007-45015.	8.0	7
15	Robust, Highly Luminescent Au ₁₃ Superatoms Protected by N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2019, 141, 14997-15002.	13.7	185
16	Light activated synthesis of the atomically precise fluorescent silver cluster Ag18(Capt)14. Nanoscale, 2019, 11, 20522-20526.	5.6	11
17	Photovoltaics as an Experimental Tool for Determining Frontier Orbital Energies and Photocatalytic Activity of Thiol Protected Gold Clusters. Journal of Physical Chemistry C, 2018, 122, 13738-13744.	3.1	15
18	Norrish type I photochemistry as a powerful tool in the isolation of thiol protected Au25SR18 clusters. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 251-254.	3.9	8

#	Article	IF	CITATIONS
19	The power of fluorescence excitation–emission matrix (EEM) spectroscopy in the identification and characterization of complex mixtures of fluorescent silver clusters. RSC Advances, 2018, 8, 42080-42086.	3.6	20
20	Experimental Evidence for a Triplet Biradical Excited-State Mechanism in the Photoreactivity of N,C-Chelate Organoboron Compounds. Journal of Physical Chemistry A, 2018, 122, 9267-9274.	2.5	14
21	Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues. Inorganic Chemistry, 2018, 57, 14698-14704.	4.0	6
22	Identifying (BN) ₂ -pyrenes as a New Class of Singlet Fission Chromophores: Significance of Azaborine Substitution. Journal of Physical Chemistry Letters, 2018, 9, 2919-2927.	4.6	28
23	Tribute to Prashant V. Kamat. Journal of Physical Chemistry C, 2018, 122, 13205-13206.	3.1	0
24	Effect of nanosilver surfaces on peptide reactivity towards reactive oxygen species. Nanoscale, 2018, 10, 15911-15917.	5.6	5
25	A Single Model for the Excited-State Dynamics of Au ₁₈ (SR) ₁₄ and Au ₂₅ (SR) ₁₈ Clusters. Journal of Physical Chemistry A, 2018, 122, 7014-7022.	2.5	14
26	Wavelength-Dependent Ultrafast Charge Carrier Separation in the WO ₃ /BiVO ₄ Coupled System. ACS Energy Letters, 2017, 2, 1362-1367.	17.4	103
27	Two Distinct Transitions in Cu _{<i>x</i>} InS ₂ Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. Journal of Physical Chemistry Letters, 2016, 7, 1452-1459.	4.6	123
28	Optimizing molecule-like gold clusters for light energy conversion. Journal of Materials Chemistry A, 2016, 4, 2075-2081.	10.3	30
29	How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 1368-1373.	4.6	160
30	Photochemical synthesis of biocompatible and antibacterial silver nanoparticles embedded within polyurethane polymers. Photochemical and Photobiological Sciences, 2015, 14, 661-664.	2.9	16
31	Silver Nanoparticles: From Bulk Material to Colloidal Nanoparticles. Engineering Materials, 2015, , 1-12.	0.6	2
32	Synergistic Effects in the Coupling of Plasmon Resonance of Metal Nanoparticles with Excited Gold Clusters. Journal of Physical Chemistry Letters, 2015, 6, 1870-1875.	4.6	33
33	Dynamics of Photogenerated Charge Carriers in WO ₃ /BiVO ₄ Heterojunction Photoanodes. Journal of Physical Chemistry C, 2015, 119, 20792-20800.	3.1	203
34	Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters. Journal of Physical Chemistry Letters, 2015, 6, 217-223.	4.6	78
35	Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy and Environmental Science, 2015, 8, 208-215.	30.8	351
36	Size-Dependent Photovoltaic Performance of CuInS ₂ Quantum Dot-Sensitized Solar Cells. Chemistry of Materials, 2014, 26, 7221-7228.	6.7	206

#	Article	IF	CITATIONS
37	â€~From the mole to the molecule': ruthenium catalyzed nitroarene reduction studied with â€~bench', high-throughput and single molecule fluorescence techniques. Catalysis Science and Technology, 2014, 4, 1989-1996.	4.1	20
38	Facile SILAR Approach to Air-Stable Naked Silver and Gold Nanoparticles Supported by Alumina. ACS Applied Materials & Interfaces, 2014, 6, 17489-17495.	8.0	18
39	Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity. Journal of the American Chemical Society, 2014, 136, 11093-11099.	13.7	238
40	Self-Assembled Dipole Nanolasers. Journal of the American Chemical Society, 2014, 136, 2956-2959.	13.7	16
41	Excited-State Behavior of Luminescent Glutathione-Protected Gold Clusters. Journal of Physical Chemistry C, 2014, 118, 1370-1376.	3.1	147
42	Sensitized excited free-radical processes as read–write tools: impact on non-linear lithographic processes. Physical Chemistry Chemical Physics, 2013, 15, 14873.	2.8	4
43	Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	58
44	Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications. Journal of Physical Chemistry Letters, 2013, 4, 1177-1187.	4.6	75
45	Plasmon mediated polymerization on the surface of silver nanoparticles for advancements in photolithographic patterning. , 2012, , .		1
46	Dual-Stage Lithography from a Light-Driven, Plasmon-Assisted Process: A Hierarchical Approach to Subwavelength Features. Langmuir, 2012, 28, 10957-10961.	3.5	18
47	Interplay between Size, Composition, and Phase Transition of Nanocrystalline Cr ³⁺ -Doped BaTiO ₃ as a Path to Multiferroism in Perovskite-Type Oxides. Journal of the American Chemical Society, 2012, 134, 1136-1146.	13.7	58
48	Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 2012, 48, 4798.	4.1	138
49	The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials, 2012, 33, 4947-4956.	11.4	200
50	Silver as an Example of the Applications of Photochemistry to the Synthesis and Uses of Nanomaterials ^{â€,â€;} . Photochemistry and Photobiology, 2012, 88, 762-768.	2.5	58
51	Kinetics of the Formation of Silver Dimers: Early Stages in the Formation of Silver Nanoparticles. Journal of the American Chemical Society, 2011, 133, 3913-3920.	13.7	53
52	Plasmon-Mediated Photopolymerization Maps Plasmon Fields for Silver Nanoparticles. Journal of the American Chemical Society, 2011, 133, 9160-9163.	13.7	43
53	Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 2011, 83, 913-930.	1.9	38
54	Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 1403-1409.	3.1	332

#	Article	IF	CITATIONS
55	Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles. Journal of the American Chemical Society, 2010, 132, 1825-1827.	13.7	365
56	General Control of Transition-Metal-Doped GaN Nanowire Growth: Toward Understanding the Mechanism of Dopant Incorporation. Nano Letters, 2008, 8, 2674-2681.	9.1	56
57	Dopant Ion Concentration Dependence of Growth and Faceting of Manganese-Doped GaN Nanowires. Journal of the American Chemical Society, 2007, 129, 10980-10981.	13.7	29