List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2506099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ancient and recent differences in the intrinsic susceptibility of <i>Mycobacterium tuberculosis</i> complex to pretomanid. Journal of Antimicrobial Chemotherapy, 2022, 77, 1685-1693.	3.0	34
2	The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe, The, 2022, 3, e265-e273.	7.3	114
3	Updating the approaches to define susceptibility and resistance to anti-tuberculosis agents: implications for diagnosis and treatment. European Respiratory Journal, 2022, 59, 2200166.	6.7	15
4	On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. Journal of Clinical Microbiology, 2021, 59, .	3.9	14
5	Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics?. European Respiratory Journal, 2021, 57, 2004077.	6.7	15
6	Is the new WHO definition of extensively drug-resistant tuberculosis easy to apply in practice?. European Respiratory Journal, 2021, 58, 2100959.	6.7	5
7	Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resistance in Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2021, 65, e0116421.	3.2	35
8	Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. International Journal of Tuberculosis and Lung Disease, 2021, 25, 791-794.	1.2	4
9	Impact of the bacillary load on the accuracy of rifampicin resistance results by Xpert® MTB/RIF. International Journal of Tuberculosis and Lung Disease, 2021, 25, 881-885.	1.2	2
10	What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex?. Clinical Microbiology and Infection, 2020, 26, 1453-1455.	6.0	14
11	MDR M. tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Medicine, 2020, 12, 104.	8.2	50
12	How To Optimally Combine Genotypic and Phenotypic Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	18
13	Systematic review of mutations associated with resistance to the new and repurposed <i>Mycobacterium tuberculosis</i> drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Journal of Antimicrobial Chemotherapy, 2020, 75, 2031-2043.	3.0	124
14	Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Medicine, 2020, 12, 27.	8.2	58
15	Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: A multicountry analysis of cross-sectional data. PLoS Medicine, 2020, 17, e1003008.	8.4	74
16	Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nature Microbiology, 2019, 4, 1680-1691.	13.3	47
17	Revised Interpretation of the Hain Lifescience GenoType MTBC To Differentiate Mycobacterium canettii and Members of the Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	20
18	lsoniazid Resistance in <i>Mycobacterium tuberculosis</i> Is a Heterogeneous Phenotype Composed of Overlapping MIC Distributions with Different Underlying Resistance Mechanisms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	32

#	Article	IF	CITATIONS
19	Standards for MIC testing that apply to the majority of bacterial pathogens should also be enforced for Mycobacterium tuberculosis complex. Clinical Microbiology and Infection, 2019, 25, 403-405.	6.0	24
20	†Those who cannot remember the past are condemned to repeat it': Drug-susceptibility testing for bedaquiline and delamanid. International Journal of Infectious Diseases, 2019, 80, S32-S35.	3.3	33
21	World Tuberculosis Day March 24th 2019 Theme: "lt's TIME―— International Journal of Infectious Diseases Tuberculosis Theme Series. International Journal of Infectious Diseases, 2019, 80, S1-S5.	3.3	3
22	Evolution of Programmatic Definitions Used in Tuberculosis Prevention and Care. Clinical Infectious Diseases, 2019, 68, 1787-1789.	5.8	24
23	Limited Evidence for the Need for Region-Specific, Genotypic Drug-Susceptibility Assays for Mycobacterium tuberculosis. Clinical Infectious Diseases, 2018, 66, 1481-1482.	5.8	2
24	What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	83
25	<scp>d</scp> -Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clinical Infectious Diseases, 2018, 67, S308-S316.	5.8	45
26	Reply to Dookie et al., "Whole-Genome Sequencing To Guide the Selection of Treatment for Drug-Resistant Tuberculosis― Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	1
27	Some Synonymous and Nonsynonymous <i>gyrA</i> Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDR <i>sl</i> Assays. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	29
28	Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Scientific Reports, 2017, 7, 46327.	3.3	82
29	Role of Alanine Racemase Mutations in Mycobacterium tuberculosis <scp>d</scp> -Cycloserine Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
30	Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clinical Microbiology and Infection, 2017, 23, 154-160.	6.0	150
31	The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clinical Microbiology and Infection, 2017, 23, 2-22.	6.0	428
32	A standardised method for interpreting the association between mutations and phenotypic drug resistance in <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2017, 50, 1701354.	6.7	273
33	Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS ONE, 2017, 12, e0189838.	2.5	19
34	<i>dfrA thyA</i> Double Deletion in <i>para</i> -Aminosalicylic Acid-Resistant Mycobacterium tuberculosis Beijing Strains. Antimicrobial Agents and Chemotherapy, 2016, 60, 3864-3867.	3.2	20
35	Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar. Journal of Global Antimicrobial Resistance, 2016, 6, 113-117.	2.2	28
36	Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin. Antimicrobial Agents and Chemotherapy, 2016, 60, 5232-5237.	3.2	15

#	Article	IF	CITATIONS
37	Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2015, 45, 477-484.	2.5	39
38	Drug-resistance mechanisms and tuberculosis drugs. Lancet, The, 2015, 385, 305-307.	13.7	22
39	Genome sequencing defines phylogeny and spread of methicillin-resistant <i>Staphylococcus aureus</i> in a high transmission setting. Genome Research, 2015, 25, 111-118.	5.5	111
40	Comment on: Characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array. Journal of Antimicrobial Chemotherapy, 2014, 69, 2298-2299.	3.0	8
41	Phylogenetic polymorphisms in antibiotic resistance genes of the Mycobacterium tuberculosis complex. Journal of Antimicrobial Chemotherapy, 2014, 69, 1205-1210.	3.0	76
42	Rapid single-colony whole-genome sequencing of bacterial pathogens. Journal of Antimicrobial Chemotherapy, 2014, 69, 1275-1281.	3.0	49
43	New methods for identifying infectious diseases. British Medical Bulletin, 2014, 112, 27-35.	6.9	14
44	Whole-genome sequencing to control antimicrobial resistance. Trends in Genetics, 2014, 30, 401-407.	6.7	232
45	Genetic diversity within Mycobacterium tuberculosis complex impacts on the accuracy of genotypic pyrazinamide drug-susceptibility assay. Tuberculosis, 2014, 94, 451-453.	1.9	11
46	Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology. JAMA Internal Medicine, 2013, 173, 1397.	5.1	181
47	Whole-Genome Sequencing for Rapid Susceptibility Testing of <i>M. tuberculosis</i> . New England Journal of Medicine, 2013, 369, 290-292.	27.0	195
48	Mycobacterium canettii is intrinsically resistant to both pyrazinamide and pyrazinoic acid. Journal of Antimicrobial Chemotherapy, 2013, 68, 1439-1440.	3.0	42
49	Rapid Whole-Genome Sequencing for Investigation of a Suspected Tuberculosis Outbreak. Journal of Clinical Microbiology, 2013, 51, 611-614.	3.9	80
50	A pilot study of rapid whole-genome sequencing for the investigation of a <i>Legionella</i> outbreak. BMJ Open, 2013, 3, e002175.	1.9	105
51	Consequences of <i>whiB7</i> (<i>Rv3197A</i>) Mutations in Beijing Genotype Isolates of the Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2013, 57, 3461-3461.	3.2	17
52	Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLoS Pathogens, 2012, 8, e1002824.	4.7	450
53	Importance of the Genetic Diversity within the Mycobacterium tuberculosis Complex for the Development of Novel Antibiotics and Diagnostic Tests of Drug Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 6080-6087.	3.2	55
54	Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak. New England Journal of Medicine, 2012, 366, 2267-2275.	27.0	609

#	Article	IF	CITATIONS
55	Overview of errors in the reference sequence and annotation of Mycobacterium tuberculosis H37Rv, and variation amongst its isolates. Infection, Genetics and Evolution, 2012, 12, 807-810.	2.3	6
56	Microbial sequences benefit health now. Nature, 2011, 471, 578-578.	27.8	5
57	Impact of <i>fgd1</i> and <i>ddn</i> Diversity in Mycobacterium tuberculosis Complex on <i>In Vitro</i> Susceptibility to PA-824. Antimicrobial Agents and Chemotherapy, 2011, 55, 5718-5722.	3.2	60
58	Comment on: Isoniazid and rifampicin resistance-associated mutations in Mycobacterium tuberculosis isolates from Yangon, Myanmar: implications for rapid molecular testing. Journal of Antimicrobial Chemotherapy, 2011, 66, 686-687.	3.0	2
59	Thr270lle in <i>embC</i> (<i>Rv3793</i>) Is Not a Marker for Ethambutol Resistance in the <i>Mycobacterium tuberculosis</i> Complex. Antimicrobial Agents and Chemotherapy, 2011, 55, 1825-1825.	3.2	7
60	Polymorphisms in Isoniazid and Prothionamide Resistance Genes of the Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2011, 55, 4408-4411.	3.2	15
61	Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-Â-lactamasesauthors' response. Journal of Antimicrobial Chemotherapy, 2011, 66, 686-686.	3.0	4
62	Read Length and Repeat Resolution: Exploring Prokaryote Genomes Using Next-Generation Sequencing Technologies. PLoS ONE, 2010, 5, e11518.	2.5	49
63	Thr202Ala in <i>thyA</i> Is a Marker for the Latin American Mediterranean Lineage of the <i>Mycobacterium tuberculosis</i> Complex Rather than <i>Para</i> -Aminosalicylic Acid Resistance. Antimicrobial Agents and Chemotherapy, 2010, 54, 4794-4798.	3.2	19
64	Role of the Dihydrofolate Reductase DfrA (Rv2763c) in Trimethoprim-Sulfamethoxazole (Co-Trimoxazole) Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2010, 54, 4951-4952.	3.2	11
65	Role of Mutations in Dihydrofolate Reductase DfrA (Rv2763c) and Thymidylate Synthase ThyA (Rv2764c) in <i>Mycobacterium tuberculosis</i> Drug Resistance. Antimicrobial Agents and Chemotherapy, 2010, 54, 4522-4525.	3.2	8
66	Single-Nucleotide Polymorphisms in Rv2629 Are Specific for <i>Mycobacterium tuberculosis</i> Genotypes Beijing and Ghana but Not Associated with Rifampin Resistance. Journal of Clinical Microbiology, 2009, 47, 223-226.	3.9	16
67	Genomic Diversity among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium tuberculosis with Identical DNA Fingerprints. PLoS ONE, 2009, 4, e7407.	2.5	128