Masoud Mozafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505866/publications.pdf

Version: 2024-02-01

400 papers 15,431 citations

15880 67 h-index 35168 102 g-index

409 all docs 409 docs citations

409 times ranked 17645 citing authors

#	Article	IF	CITATIONS
1	Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-cell-like Phenotypes and Promoting Neurite Outgrowth in Vitro. Basic and Clinical Neuroscience, 2023, 14, 31-42.	0.3	O
2	Effect of laser cladded co-doped strontium fluorapatite nanopowder coating on the antibacterial and cell attachment of Ti-6Al-4V implants for bone applications. Materials Technology, 2022, 37, 829-841.	1.5	10
3	Plateletâ€rich plasmaâ€hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogel for cartilage regeneration. Biotechnology and Applied Biochemistry, 2022, 69, 534-547.	1.4	11
4	Rethinking the brain drain: A framework to analyze the future behavior of complex socio-economic systems. Futures, 2022, 135, 102835.	1.4	4
5	Surface functionalization of anodized tantalum with Mn3O4 nanoparticles for effective corrosion protection in simulated inflammatory condition. Ceramics International, 2022, 48, 3148-3156.	2.3	22
6	Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioengineering and Translational Medicine, 2022, 7, e10261.	3.9	29
7	Synthesis, microstructure and biodegradation behavior of MgO-TiO2-PCL nanocomposite coatings on the surface of magnesium-based biomaterials. Materials Letters, 2022, 310, 131142.	1.3	3
8	Effects of co-incorporated ternary elements on biocorrosion stability, antibacterial efficacy, and cytotoxicity of plasma electrolytic oxidized titanium for implant dentistry. Materials Chemistry and Physics, 2022, 276, 125436.	2.0	19
9	Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/ \hat{l}^2 -catenin signaling. Molecular and Cellular Endocrinology, 2022, 540, 111520.	1.6	6
10	Human Organsâ€onâ€Chips: A Review of the Stateâ€ofâ€theâ€Art, Current Prospects, and Future Challenges. Advanced Biology, 2022, 6, e2000526.	1.4	21
11	Chitosan-based inks for 3D printing and bioprinting. Green Chemistry, 2022, 24, 62-101.	4.6	76
12	Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers, 2022, 278, 118998.	5.1	22
13	Indirect effects of COVID-19 on the environment: How deep and how long?. Science of the Total Environment, 2022, 810, 152255.	3.9	16
14	Threeâ€dimensionalâ€printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory <scp>ectoâ€mesenchymal</scp> stem cells into Schwann cellâ€like phenotypes and promotion of neurite outgrowth. Journal of Biomedical Materials Research - Part A, 2022, 110, 1134-1146.	2.1	11
15	Transplantation of decellularised human amniotic membranes seeded with mesenchymal stem cellâ€educated macrophages into animal models. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1637-1650.	1.6	4
16	Stem cell therapy for COVID-19 pneumonia. Molecular Biomedicine, 2022, 3, 6.	1.7	7
17	COVID‶9: A systematic review and update on prevention, diagnosis, and treatment. MedComm, 2022, 3, e115.	3.1	30
18	Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews, 2022, 9, .	5 . 5	50

#	Article	IF	CITATIONS
19	Biodegradable Magnesium Biomaterialsâ€"Road to the Clinic. Bioengineering, 2022, 9, 107.	1.6	31
20	3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. International Journal of Biological Macromolecules, 2022, 207, 9-22.	3.6	16
21	Polydopamine Biomaterials for Skin Regeneration. ACS Biomaterials Science and Engineering, 2022, 8, 2196-2219.	2.6	26
22	Additive Manufacturing: An Opportunity for the Fabrication of Near-Net-Shape NiTi Implants. Journal of Manufacturing and Materials Processing, 2022, 6, 65.	1.0	20
23	Angiogenesis and vasculogenesis: Status in tissue engineering. , 2022, , 1-13.		0
24	Smart biomaterials: From 3D printing to 4D bioprinting. Methods, 2022, 205, 191-199.	1.9	13
25	Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin. Biotechnology and Applied Biochemistry, 2021, 68, 247-256.	1.4	25
26	Electrospinning for tissue engineering applications. Progress in Materials Science, 2021, 117, 100721.	16.0	378
27	Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications. Ceramics International, 2021, 47, 260-271.	2.3	62
28	Design and fabrication of polycaprolactone/gelatin composite scaffolds for diaphragmatic muscle reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 78-87.	1.3	6
29	Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Materials Science and Engineering C, 2021, 121, 111741.	3.8	65
30	Cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing. Ceramics International, 2021, 47, 9447-9461.	2.3	41
31	Magnetic nanoparticles in cancer therapy. , 2021, , 425-445.		1
32	Hierarchical Microstructure Tailoring of Pure Titanium for Enhancing Cellular Response at Tissue-Implant Interface. Journal of Biomedical Nanotechnology, 2021, 17, 115-130.	0.5	25
33	An overview of the use of biomaterials, nanotechnology, and stem cells for detection and treatment of COVID-19: towards a framework to address future global pandemics. Emergent Materials, 2021, 4, 19-34.	3.2	21
34	Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration. Regenerative Medicine, 2021, 16, 47-70.	0.8	11
35	Polyethylene glycol–modified DOTAP:cholesterol/adenovirus hybrid vectors have improved transduction efficiency and reduced immunogenicity. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	8
36	Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. Materials Science and Engineering C, 2021, 122, 111938.	3.8	10

3

#	Article	IF	CITATIONS
37	Timing of surgery following SARSâ€CoVâ€2 infection: an international prospective cohort study. Anaesthesia, 2021, 76, 748-758.	1.8	365
38	Potential for Chemistry in Multidisciplinary, Interdisciplinary, and Transdisciplinary Teaching Activities in Higher Education. Journal of Chemical Education, 2021, 98, 1124-1145.	1.1	26
39	Biodegradable magnesiumâ€based biomaterials: An overview of challenges and opportunities. MedComm, 2021, 2, 123-144.	3.1	77
40	COVID-19: insights into virus–receptor interactions. Molecular Biomedicine, 2021, 2, 10.	1.7	8
41	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	2.3	78
42	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	3.2	43
43	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	2.3	57
44	CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. Materials, 2021, 14, 3164.	1.3	10
45	Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials, 2021, 14, 3652.	1.3	47
46	Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Engineering - Part A, 2021, 27, 821-843.	1.6	32
47	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	3.6	97
48	Editorial: Bioengineered Nanoparticles in Cancer Therapy. Frontiers in Molecular Biosciences, 2021, 8, 706277.	1.6	2
49	Synthesis, characterization and performance enhancement of dry polyaniline-coated neuroelectrodes for electroencephalography measurement. Current Applied Physics, 2021, 27, 43-50.	1.1	9
50	4D bioprinting of tissues and organs. Bioprinting, 2021, 23, e00161.	2.9	34
51	Smart biomaterials—A proposed definition and overview of the field. Current Opinion in Biomedical Engineering, 2021, 19, 100311.	1.8	29
52	Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials, 2021, 14, 7277.	1.3	44
53	Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications. BioImpacts, 2021, , .	0.7	6
54	Selective Contribution of Bioactive Glasses to Molecular and Cellular Pathways. ACS Biomaterials Science and Engineering, 2020, 6, 4-20.	2.6	15

#	Article	IF	Citations
55	Decellularized ECM-derived bioinks: Prospects for the future. Methods, 2020, 171, 108-118.	1.9	113
56	Inducing type 2 immune response, induction of angiogenesis, and anti-bacterial and anti-inflammatory properties make Lacto-n-Neotetraose (LNnT) a therapeutic choice to accelerate the wound healing process. Medical Hypotheses, 2020, 134, 109389.	0.8	14
57	Effect of ZnO pore-sealing layer on anti-corrosion and in-vitro bioactivity behavior of plasma electrolytic oxidized AZ91 magnesium alloy. Materials Letters, 2020, 258, 126779.	1.3	38
58	Decellularization and preservation of human skin: A platform for tissue engineering and reconstructive surgery. Methods, 2020, 171, 62-67.	1.9	34
59	Decellularized human amniotic membrane: From animal models to clinical trials. Methods, 2020, 171, 11-19.	1.9	39
60	Improved corrosion performance of biodegradable magnesium in simulated inflammatory condition via drug-loaded plasma electrolytic oxidation coatings. Materials Chemistry and Physics, 2020, 239, 122003.	2.0	52
61	Application of compatibilized polymer blends in biomedical fields. , 2020, , 511-537.		38
62	Additively manufactured smallâ€diameter vascular grafts with improved tissue healing using a novel SNAP impregnation method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1322-1331.	1.6	8
63	Synergistic reinforcement of glass-ionomer dental cements with silanized glass fibres. Materials Technology, 2020, 35, 433-445.	1.5	2
64	Decellularization and recellularization strategies for translational medicine. Methods, 2020, 171, 1-2.	1.9	2
65	Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol. International Journal of Biological Macromolecules, 2020, 147, 160-169.	3.6	75
66	Potential self-healing functionality in a composite structure: methodology and applications. , 2020, , 53-70.		2
67	Basics of self-healing composite materials. , 2020, , 15-31.		11
68	Self-healing polymers for composite structural applications. , 2020, , 33-51.		5
69	Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 2020, 326, 523-543.	4.8	134
70	Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. Materials, 2020, 13, 3072.	1.3	41
71	Quantum Dots: A Review from Concept to Clinic. Biotechnology Journal, 2020, 15, e2000117.	1.8	103
72	Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomaterials Science and Engineering, 2020, 6, 5096-5109.	2.6	48

#	Article	IF	Citations
73	Conductive biomaterials as nerve conduits: Recent advances and future challenges. Applied Materials Today, 2020, 20, 100784.	2.3	45
74	Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. International Journal of Biological Macromolecules, 2020, 159, 117-128.	3.6	56
75	Bioactive Glasses and Glass/Polymer Composites for Neuroregeneration: Should We Be Hopeful?. Applied Sciences (Switzerland), 2020, 10, 3421.	1.3	19
76	Zeolite in tissue engineering: Opportunities and challenges. MedComm, 2020, 1, 5-34.	3.1	51
77	Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomaterialia, 2020, 110, 37-67.	4.1	188
78	Nanotechnology for angiogenesis: opportunities and challenges. Chemical Society Reviews, 2020, 49, 5008-5057.	18.7	135
79	Strontium- and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications. Materials, 2020, 13, 1348.	1.3	46
80	Oxygen-Releasing Scaffolds for Accelerated Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 2985-2994.	2.6	38
81	Zeolites for theranostic applications. Journal of Materials Chemistry B, 2020, 8, 5992-6012.	2.9	45
82	Principles of biocompatibility. , 2020, , 3-9.		2
83	Cellular response to alumina. , 2020, , 335-352.		0
84	Cellular response to bioactive glasses and glass–ceramics. , 2020, , 395-421.		2
85	Cellular response to metal implants. , 2020, , 453-471.		4
86	Sol–Gel Synthesis, Physico-Chemical and Biological Characterization of Cerium Oxide/Polyallylamine Nanoparticles. Polymers, 2020, 12, 1444.	2.0	26
86		2.0	26
	Nanoparticles. Polymers, 2020, 12, 1444.	2.0	
87	Nanoparticles. Polymers, 2020, 12, 1444. Gastrointestinal response to biomaterials. , 2020, , 667-680.	2.0	0

#	Article	IF	Citations
91	Nanotechnology for ocular and optic drug delivery and targeting. , 2020, , 499-523.		2
92	Nanoengineered biomaterials for cardiovascular disease. , 2020, , 753-766.		1
93	Trends in Biotechnology at the Turn of the Millennium. Recent Patents on Biotechnology, 2020, 14, 78-82.	0.4	12
94	Zeolites in drug delivery: Progress, challenges and opportunities. Drug Discovery Today, 2020, 25, 642-656.	3.2	113
95	Improvement of efficacy and decrement cytotoxicity of oxaliplatin anticancer drug using bovine serum albumin nanoparticles: synthesis, characterisation and release behaviour. IET Nanobiotechnology, 2020, 14, 105-111.	1.9	15
96	Metronidazoleâ€loaded glass ionomer dental cements. International Journal of Applied Ceramic Technology, 2020, 17, 1985-1997.	1.1	3
97	Biomaterials Science and Engineering in the Middle East. ACS Biomaterials Science and Engineering, 2020, 6, 1-3.	2.6	0
98	The in vivo effect of Lacto-N-neotetraose (LNnT) on the expression of type 2 immune response involved genes in the wound healing process. Scientific Reports, 2020, 10, 997.	1.6	11
99	Copper-enriched diamond-like carbon coatings promote regeneration at the bone–implant interface. Heliyon, 2020, 6, e03798.	1.4	33
100	Nomenclature of MOFs., 2020, , 1-9.		2
101	The role of flexibility in MOFs. , 2020, , 93-110.		4
102	Adsorption, delivery, and controlled release of therapeutic molecules from MOFs., 2020, , 297-320.		2
103	BioMOFs., 2020, , 321-345.		3
104	Advanced surface treatment techniques counteract biofilm-associated infections on dental implants. Materials Research Express, 2020, 7, 015417.	0.8	29
105	Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers, 2020, 12, 1150.	2.0	120
106	Effect of Surfactant type on the Characteristics and Bioactivity of Mesoporous Bioactive Glasses. Advanced Materials Letters, 2020, 11 , 1 -7.	0.3	0
107	Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering. Biomedical Glasses, 2020, 6, 57-69.	2.4	22
108	Laser Cladding of Fluorapatite Nanopowders on Ti6Al4V. Advanced Materials Letters, 2020, 11, 1-5.	0.3	1

#	Article	IF	Citations
109	Plastic Packaging, Recycling, and Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2020, , 544-551.	0.0	4
110	Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections. Advanced Materials Letters, 2020, 11, 18-21.	0.3	0
111	Chemistry of biomaterials: future prospects. Current Opinion in Biomedical Engineering, 2019, 10, 181-190.	1.8	58
112	Curcumin: footprints on cardiac tissue engineering. Expert Opinion on Biological Therapy, 2019, 19, 1199-1205.	1.4	13
113	Synergistic effects of carbohydrate polymers on the performance of hybrid injectable bone pastes. European Polymer Journal, 2019, 119, 523-530.	2.6	7
114	Heterotelechelic multiblock polymers using click chemistry., 2019,, 129-142.		0
115	Functionalized polymers for diagnostic engineering. , 2019, , 301-322.		3
116	Functional polymers: an introduction in the context of biomedical engineering., 2019,, 1-20.		3
117	Grafted biopolymers II: synthesis and characterization. , 2019, , 43-63.		1
118	Conjugated polymers having semiconducting properties. , 2019, , 65-82.		1
119	Supramolecular metallopolymers. , 2019, , 83-110.		2
120	Functionalized polymers for drug/gene-delivery applications. , 2019, , 275-299.		3
121	Synthesis of titanium oxide nanotubes and their decoration by MnO nanoparticles for biomedical applications. Ceramics International, 2019, 45, 19275-19282.	2.3	19
122	Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studies. Materials Science and Engineering C, 2019, 105, 109912.	3.8	23
123	Scaffolds for ligament tissue engineering. , 2019, , 299-327.		2
124	Boron-based polymers: opportunities and challenges. Materials Today Chemistry, 2019, 14, 100184.	1.7	31
125	Polyaniline: An introduction and overview., 2019,, 1-15.		7
126	Synthetic route of PANI (III): Ultrasound-assisted polymerization. , 2019, , 67-89.		2

#	Article	IF	CITATIONS
127	Synthetic route of PANI (V): Electrochemical polymerization. , 2019, , 105-119.		4
128	Application of polyaniline and its derivatives. , 2019, , 259-272.		17
129	Self-gelling electroactive hydrogels based on chitosan–aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110549.	2.5	74
130	Editorial overview: Biomaterials: On the biocompatibility of biomaterials. Current Opinion in Biomedical Engineering, 2019, 10, A1-A3.	1.8	1
131	Functional protein to polymer surfaces: an attachment. , 2019, , 191-210.		1
132	Functionally graded titanium implants: Characteristic enhancement induced by combined severe plastic deformation. PLoS ONE, 2019, 14, e0221491.	1,1	46
133	Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules, 2019, 9, 448.	1.8	142
134	Fullerene-based delivery systems. Drug Discovery Today, 2019, 24, 898-905.	3.2	134
135	Improved cellular response on functionalized polypyrrole interfaces. Journal of Cellular Physiology, 2019, 234, 15279-15287.	2.0	10
136	Introduction to tissue engineering scaffolds. , 2019, , 3-22.		6
137	Scaffold for bone tissue engineering. , 2019, , 189-209.		14
138	Scaffolds for dental cementum. , 2019, , 563-594.		0
139	Bioengineered cardiac patch scaffolds. , 2019, , 705-728.		2
140	Scaffolds for spinal cord regeneration. , 2019, , 31-66.		0
141	Scaffolds for regeneration of dermo-epidermal skin tissue. , 2019, , 193-209.		5
142	Scaffolds for tracheal tissue engineering. , 2019, , 361-391.		3
143	Scaffolds for tissue engineering of the bronchi. , 2019, , 393-410.		1
144	Scaffolds for lung tissue engineering. , 2019, , 427-448.		5

#	Article	IF	CITATIONS
145	Scaffolds for reconstruction of the diaphragm. , 2019, , 449-474.		O
146	Scaffolds for corneal tissue engineering. , 2019, , 649-672.		2
147	Moving from clinical trials to clinical practice. , 2019, , 153-164.		0
148	Scaffolds for engineering heart valve., 2019,, 643-658.		0
149	Scaffolds for blood vessel tissue engineering. , 2019, , 659-684.		0
150	Functionalized polymers for tissue engineering and regenerative medicines., 2019,, 323-357.		10
151	Characterization methodologies of functional polymers. , 2019, , 359-381.		1
152	State-of-the-art and future perspectives of functional polymers. , 2019, , 383-395.		3
153	Scaffolds for intraocular lens. , 2019, , 693-709.		1
154	Emerging magnesium-based biomaterials for orthopedic implantation. Emerging Materials Research, 2019, 8, 305-319.	0.4	38
155	Electrically conductive nanomaterials for cardiac tissue engineering. Advanced Drug Delivery Reviews, 2019, 144, 162-179.	6.6	137
156	Corneal Repair and Regeneration: Current Concepts and Future Directions. Frontiers in Bioengineering and Biotechnology, 2019, 7, 135.	2.0	105
157	Dental amalgam. , 2019, , 105-125.		0
158	Impression materials for dental prosthesis. , 2019, , 197-215.		4
159	Fiber-reinforced composites. , 2019, , 301-315.		6
160	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	2.3	154
161	Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.	2.6	206
162	Nanoengineered biomaterials for diaphragm regeneration. , 2019, , 345-362.		2

#	Article	IF	CITATIONS
163	Mesoporous bioactive glasses (MBGs) in cancer therapy: Full of hope and promise. Materials Letters, 2019, 251, 241-246.	1.3	54
164	Chitosan/polyvinyl alcohol nanofibrous membranes: towards green super-adsorbents for toxic gases. Heliyon, 2019, 5, e01527.	1.4	49
165	Preparation and characterization of curcuminâ€loaded polymeric nanomicelles to interference with amyloidogenesis through glycation method. Biotechnology and Applied Biochemistry, 2019, 66, 537-544.	1.4	30
166	Calcium carbonate: Adored and ignored in bioactivity assessment. Acta Biomaterialia, 2019, 91, 35-47.	4.1	72
167	Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomaterialia, 2019, 92, 82-91.	4.1	47
168	3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceramics International, 2019, 45, 14029-14038.	2.3	45
169	Controlled NO-Release from 3D-Printed Small-Diameter Vascular Grafts Prevents Platelet Activation and Bacterial Infectivity. ACS Biomaterials Science and Engineering, 2019, 5, 2284-2296.	2.6	34
170	Exploring and Exploiting Tissue Engineering Through the Design of Multifunctional Therapeutic Systems. Current Stem Cell Research and Therapy, 2019, 14, 80-82.	0.6	4
171	Using Bioactive Glasses in the Management of Burns. Frontiers in Bioengineering and Biotechnology, 2019, 7, 62.	2.0	47
172	Nano-immunoengineering: Opportunities and challenges. Current Opinion in Biomedical Engineering, 2019, 10, 51-59.	1.8	23
173	Synthesis and physico-chemical characterization of fluoride (F)- and silver (Ag)-substituted sol-gel mesoporous bioactive glasses. Biomedical Glasses, 2019, 5, 185-192.	2.4	12
174	9. Functionalised antimicrobial polymers. , 2019, , 199-228.		0
175	Emerging Biomedical Applications of Algal Polysaccharides. Current Pharmaceutical Design, 2019, 25, 1335-1344.	0.9	23
176	Niobium-Treated Titanium Implants with Improved Cellular and Molecular Activities at the Tissueâ€"Implant Interface. Materials, 2019, 12, 3861.	1.3	24
177	4. Polymer–metal nanocomposites with antimicrobial activity. , 2019, , 83-106.		1
178	3. Design of biomimetic antimicrobial polymers. , 2019, , 57-82.		0
179	6. Polylactic acid and polyethylene glycol as antimicrobial agents., 2019,, 125-146.		0
180	Biocompatibility of aluminaâ€based biomaterials–A review. Journal of Cellular Physiology, 2019, 234, 3321-3335.	2.0	75

#	Article	IF	Citations
181	Engineering the niche for hair regeneration $\hat{a}\in$ A critical review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 70-85.	1.7	32
182	Additive Manufacturing of Biomaterials \hat{a} The Evolution of Rapid Prototyping. Advanced Engineering Materials, 2019, 21, 1800511.	1.6	103
183	Nanoengineered biomaterials for bladder regeneration. , 2019, , 459-474.		0
184	An introduction to nanoengineered biomaterials. , 2019, , 1-11.		5
185	Glass-ceramics for cancer treatment: So close, or yet so far?. Acta Biomaterialia, 2019, 83, 55-70.	4.1	85
186	Nanoengineered biomaterials for tracheal replacement. , 2019, , 285-303.		2
187	Bevacizumab and erlotinib versus bevacizumab for colorectal cancer treatment: systematic review and meta-analysis. International Journal of Clinical Pharmacy, 2019, 41, 30-41.	1.0	6
188	Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Materials Chemistry and Physics, 2019, 225, 331-339.	2.0	59
189	Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surface and Coatings Technology, 2019, 360, 153-171.	2.2	119
190	Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Frontiers in Bioengineering and Biotechnology, 2019, 7, 4.	2.0	47
191	Reversible multistimuli-responsive manganese–zinc ferrite/P(NIPAAM-AAc-AAm) core-shell nanoparticles: A programmed ferrogel system. Materials Chemistry and Physics, 2019, 226, 44-50.	2.0	13
192	Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences (Switzerland), 2019, 9, 174.	1.3	58
193	Nanoengineered biomaterials for lung regeneration. , 2019, , 305-323.		2
194	Nanoengineered biomaterials for intestine regeneration. , 2019, , 363-378.		6
195	Curcumin in tissue engineering: A traditional remedy for modern medicine. BioFactors, 2019, 45, 135-151.	2.6	53
196	Nanoengineered biomaterials for bone/dental regeneration. , 2019, , 13-38.		5
197	Optimisation and biological activities of bioceramic robocast scaffolds provided with an oxygen-releasing coating for bone tissue engineering applications. Ceramics International, 2019, 45, 805-816.	2.3	37
198	Nanoengineered biomaterials for kidney regeneration. , 2019, , 325-344.		7

#	Article	lF	Citations
199	Nanoengineered biomaterials for cartilage repair. , 2019, , 39-71.		8
200	Makespan minimization for batching work and rework process on a single facility with an aging effect: a hybrid meta-heuristic algorithm for sustainable production management. Journal of Intelligent Manufacturing, 2019, 30, 33-45.	4.4	14
201	Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders. Molecular Neurobiology, 2019, 56, 307-318.	1.9	10
202	Sustained delivery of olanzapine from sunflower oilâ€based polyolâ€urethane nanoparticles synthesised through a cyclic carbonate ringâ€opening reaction. IET Nanobiotechnology, 2019, 13, 703-711.	1.9	12
203	Transplantation of Adipose Tissue-Derived Stem Cells into Brain Through Cerebrospinal Fluid in Rat Models: Protocol Development and Initial Outcome Data. Current Stem Cell Research and Therapy, 2019, 14, 191-195.	0.6	12
204	Chitosan in Biomedical Engineering: A Critical Review. Current Stem Cell Research and Therapy, 2019, 14, 93-116.	0.6	165
205	The Effect of Alpha-Tocopherol on Morphine Tolerance-induced Expression of c-fos Proto-oncogene from a Biotechnological Perspective. Recent Patents on Biotechnology, 2019, 13, 137-148.	0.4	2
206	Antiproliferative Activity of , , and in Interaction with the Prostatic Activity of CD82. Reports of Biochemistry and Molecular Biology, 2019, 8, 260-268.	0.5	7
207	Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends in Biotechnology, 2018, 36, 430-444.	4.9	253
208	Diamond-like carbon-deposited films: a new class of biocorrosion protective coatings. Surface Innovations, 2018, 6, 266-276.	1.4	46
209	Evidence of Electrochemical Resistance on Ternary V-C-N Layers. Silicon, 2018, 10, 2499-2507.	1.8	10
210	Bone Regeneration in rat using a gelatin/bioactive glass nanocomposite scaffold along with endothelial cells (<scp>HUVEC</scp> s). International Journal of Applied Ceramic Technology, 2018, 15, 1427-1438.	1.1	21
211	Oligoaniline-based conductive biomaterials for tissue engineering. Acta Biomaterialia, 2018, 72, 16-34.	4.1	119
212	Nanostructured monticellite for tissue engineering applications - Part I: Microstructural and physicochemical characteristics. Ceramics International, 2018, 44, 12731-12738.	2.3	22
213	Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 2018, 187, 66-84.	5.1	454
214	Synthesis of Indolo[3,2â€∢i>b]carbazoles <i>via</i> an Anomericâ€Based Oxidation Process: A Combined Experimental and Computational Strategy. Journal of Heterocyclic Chemistry, 2018, 55, 1061-1068.	1.4	12
215	Saving the Joint Comprehensive Plan of Action: full of hope or just hopeless?. Lancet, The, 2018, 391, 119.	6.3	1
216	A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. Journal of Colloid and Interface Science, 2018, 516, 57-66.	5.0	92

#	Article	IF	CITATIONS
217	Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Progress in Organic Coatings, 2018, 119, 194-202.	1.9	83
218	Diamond-like carbon thin films prepared by pulsed-DC PE-CVD for biomedical applications. Surface Innovations, 2018, 6, 167-175.	1.4	58
219	3D Protein-Based Bilayer Artificial Skin for the Guided Scarless Healing of Third-Degree Burn Wounds in Vivo. Biomacromolecules, 2018, 19, 2409-2422.	2.6	68
220	Osteogenic potential of stem cellsâ€seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 61-72.	1.6	89
221	Synthesis and characterisation of highly interconnected porous poly(ε-caprolactone)-collagen scaffolds: a therapeutic design to facilitate tendon regeneration. Materials Technology, 2018, 33, 29-37.	1.5	31
222	Improving corrosion behavior and in vitro bioactivity of plasma electrolytic oxidized AZ91 magnesium alloy using calcium fluoride containing electrolyte. Materials Letters, 2018, 212, 98-102.	1.3	45
223	3D–printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival. Materials Science and Engineering C, 2018, 84, 236-242.	3.8	77
224	Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior. Progress in Organic Coatings, 2018, 115, 143-150.	1.9	99
225	Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomedical Materials (Bristol), 2018, 13, 035003.	1.7	97
226	Poloxamer-based stimuli-responsive biomaterials. Materials Today: Proceedings, 2018, 5, 15516-15523.	0.9	54
227	GelMa/PEGDA containing graphene oxide as an IPN hydrogel with superior mechanical performance. Materials Today: Proceedings, 2018, 5, 15790-15799.	0.9	36
228	The role of photonics and natural curing agents of TGF- \hat{l}^21 in treatment of osteoarthritis. Materials Today: Proceedings, 2018, 5, 15540-15549.	0.9	6
229	Synthesis and microstructural characterization of GelMa/PEGDA hybrid hydrogel containing graphene oxide for biomedical purposes. Materials Today: Proceedings, 2018, 5, 15635-15644.	0.9	43
230	The competitive mechanism of plasma electrolyte oxidation for the formation of magnesium oxide bioceramic coatings. Materials Today: Proceedings, 2018, 5, 15677-15685.	0.9	25
231	Effect of TGF- \hat{I}^21 on water retention properties of healthy and osteoarthritic chondrocytes. Materials Today: Proceedings, 2018, 5, 15717-15725.	0.9	6
232	Nanostructured monticellite: An emerging player in tissue engineering. Materials Today: Proceedings, 2018, 5, 15744-15753.	0.9	12
233	When size matters: Biological response to strontium- and cobalt-substituted bioactive glass particles. Materials Today: Proceedings, 2018, 5, 15768-15775.	0.9	15
234	Breathable tissue engineering scaffolds: An efficient design-optimization by additive manufacturing. Materials Today: Proceedings, 2018, 5, 15813-15820.	0.9	4

#	Article	IF	CITATIONS
235	Polyaniline in retrospect and prospect. Materials Today: Proceedings, 2018, 5, 15852-15860.	0.9	39
236	Synergistic combination of bioactive glasses and polymers for enhanced bone tissue regeneration. Materials Today: Proceedings, 2018, 5, 15532-15539.	0.9	29
237	Nanotechnology and Nanomedicine: Start small, think big. Materials Today: Proceedings, 2018, 5, 15492-15500.	0.9	167
238	An innovative approach towards 3D-printed scaffolds for the next generation of tissue-engineered vascular grafts. Materials Today: Proceedings, 2018, 5, 15586-15594.	0.9	33
239	Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications. Materials Today: Proceedings, 2018, 5, 15603-15612.	0.9	40
240	Photosensitizers in medicine: Does nanotechnology make a difference?. Materials Today: Proceedings, 2018, 5, 15836-15844.	0.9	15
241	Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. Advances in Experimental Medicine and Biology, 2018, 1119, 1-19.	0.8	25
242	Biomedical applications of nanoceria: new roles for an old player. Nanomedicine, 2018, 13, 3051-3069.	1.7	87
243	Curcumin nanoparticle-incorporated collagen/chitosan scaffolds for enhanced wound healing. Bioinspired, Biomimetic and Nanobiomaterials, 2018, 7, 159-166.	0.7	10
244	Protein adsorption on polymers. Materials Today Communications, 2018, 17, 527-540.	0.9	78
245	Investigation of Pulse electric field effect on HeLa cells alignment properties on extracellular matrix protein patterned surface. Journal of Physics: Conference Series, 2018, 1019, 012018.	0.3	2
246	Microemulsion-based synthesis of a visible-light-responsive Si-doped TiO2 photocatalyst and its photodegradation efficiency potential. Materials Chemistry and Physics, 2018, 220, 374-382.	2.0	26
247	Bioactive glasses entering the mainstream. Drug Discovery Today, 2018, 23, 1700-1704.	3.2	96
248	Nanostructured monticellite for tissue engineering applications – Part II: Molecular and biological characteristics. Ceramics International, 2018, 44, 14704-14711.	2.3	24
249	Strategies for directing cells into building functional hearts and parts. Biomaterials Science, 2018, 6, 1664-1690.	2.6	17
250	Biomaterials selection for neuroprosthetics. Current Opinion in Biomedical Engineering, 2018, 6, 99-109.	1.8	53
251	Bioengineered Scaffolds for Stem Cell Applications in Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology, 2018, 1107, 73-89.	0.8	25
252	A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. Ceramics International, 2018, 44, 16137-16149.	2.3	13

#	Article	IF	Citations
253	Pathology, Chemoprevention, and Preclinical Models for Target Validation in Barrett Esophagus. Cancer Research, 2018, 78, 3747-3754.	0.4	2
254	Laser deposition of nano coatings on biomedical implants. , 2018, , 235-254.		7
255	Nanotechnology in Wound Care: One Step Closer to the Clinic. Molecular Therapy, 2018, 26, 2085-2086.	3.7	25
256	A new double-layer hydroxyapatite/alumina-silica coated titanium implants using plasma spray technique. Surface and Coatings Technology, 2018, 352, 474-482.	2.2	18
257	Functional PEO layers on magnesium alloys: innovative polymer-free drug-eluting stents. Surface Innovations, 2018, 6, 237-243.	1.4	29
258	Low-carbon transition through a duty to divest: Back to the future, ahead to the past. Renewable and Sustainable Energy Reviews, 2018, 94, 183-186.	8.2	3
259	Small But Mighty: Changing The Healing Pathways Through Innovative Nanotechnological Strategies. , 2018, , .		0
260	Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11392-11404.	4.0	81
261	Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Materials Science and Engineering C, 2017, 75, 688-698.	3.8	76
262	Fullerene: biomedical engineers get to revisit an old friend. Materials Today, 2017, 20, 460-480.	8.3	274
263	Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomaterialia, 2017, 58, 502-514.	4.1	139
264	Nanomaterials engineering for drug delivery: a hybridization approach. Journal of Materials Chemistry B, 2017, 5, 3995-4018.	2.9	96
265	Therapeutic Nanoparticles for Targeted Delivery of Anticancer Drugs. , 2017, , 245-259.		23
266	Fabrication of newly developed pectin –GeO ₂ nanocomposite using extreme biomimetics route and its antibacterial activities. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 655-661.	1.2	16
267	Ionically Crosslinked Thermoresponsive Chitosan Hydrogels formed In Situ: A Conceptual Basis for Deeper Understanding. Macromolecular Materials and Engineering, 2017, 302, 1700227.	1.7	33
268	Green solvent-based sol–gel synthesis of monticellite nanoparticles: a rapid and efficient approach. Journal of Sol-Gel Science and Technology, 2017, 84, 87-95.	1.1	30
269	Controllable synthesis and characterisation of palladium (II) anticancer complexâ€loaded colloidal gelatin nanoparticles as a novel sustainedâ€release delivery system in cancer therapy. IET Nanobiotechnology, 2017, 11, 591-596.	1.9	3
270	A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2405-2414.	1.7	34

#	Article	IF	CITATIONS
271	Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Research Reviews, 2017, 40, 20-30.	5.0	335
272	Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. Journal of Controlled Release, 2017, 262, 317-328.	4.8	104
273	Social change and HIV in Iran: reaching hidden populations. Lancet HIV, the, 2017, 4, e282-e283.	2.1	8
274	A new rat model of neonatal bilirubin encephalopathy (kernicterus). Journal of Pharmacological and Toxicological Methods, 2017, 84, 44-50.	0.3	17
275	Reply to "Comment on: Inflammatory mediators in osteoarthritis: A critical review of the state-of-the art, prospects, and future challenges― Bone, 2017, 105, 311.	1.4	2
276	Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering C, 2017, 70, 736-744.	3.8	106
277	A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles. Journal of Alloys and Compounds, 2017, 693, 1090-1095.	2.8	36
278	Improved electrochemical performance of nitrocarburised stainless steel by hydrogenated amorphous carbon thin films for bone tissue engineering. IET Nanobiotechnology, 2017, 11, 656-660.	1.9	23
279	Shapeâ€controlled silver NPs for shapeâ€dependent biological activities. Micro and Nano Letters, 2017, 12, 647-651.	0.6	8
280	Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine, 2017, 12, 2403-2422.	1.7	160
281	Nanobiomaterials for bionic eye. , 2016, , 257-285.		5
282	Oxygen-generating nanobiomaterials for the treatment of diabetes., 2016,, 331-353.		2
283	Nanobiomaterials set to revolutionize drug-delivery systems for the treatment of diabetes. , 2016, , 487-514.		4
284	Thin films for tissue engineering applications. , 2016, , 167-195.		13
285	Fabrication and <i>in vivo </i> evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 2001-2010.	2.1	59
286	A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current stateâ€ofâ€theâ€art, emerging directions and future trends. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2181-2200.	1.7	93
287	Iran and science publishing in the post-sanctions era. Lancet, The, 2016, 387, 1721-1722.	6.3	15
288	Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomaterialia, 2016, 45, 234-246.	4.1	122

#	Article	IF	Citations
289	Discussion: Fracture safety of double-porous hydroxyapatite biomaterials. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 176-177.	0.7	3
290	Production and Characterization of a Ag- and Zn-Doped Glass-Ceramic Material and In Vitro Evaluation of Its Biological Effects. Journal of Materials Engineering and Performance, 2016, 25, 3398-3408.	1.2	7
291	Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. Journal of Non-Crystalline Solids, 2016, 449, 133-140.	1.5	77
292	Chitosan-functionalized poly(lactide-co-glycolide) nanoparticles: breaking through the brain's tight security gateway. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 74-84.	0.7	12
293	Insight into the interactive effects of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -glycerophosphate molecules on thermosensitive chitosan-based hydrogels. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 67-73.	0.7	10
294	High-Temperature Resistive Free Radically Synthesized Chloro-Substituted Phenyl Maleimide Antimicrobial Polymers. Polymer-Plastics Technology and Engineering, 2016, 55, 1916-1939.	1.9	4
295	Osteoblast–Seeded Bioglass/Gelatin Nanocomposite: A Promising Bone Substitute in Critical-Size Calvarial Defect Repair in Rat. International Journal of Artificial Organs, 2016, 39, 524-533.	0.7	43
296	Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering?. Trends in Biotechnology, 2016, 34, 1010-1021.	4.9	186
297	Time to return blue skies to Iran. Science, 2016, 352, 1404-1404.	6.0	4
298	Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone, 2016, 85, 81-90.	1.4	279
299	What's Next for Gastrointestinal Disorders: No Needles?. Journal of Controlled Release, 2016, 221, 48-61.	4.8	4
300	Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissueâ€derived stromal cells?. Cell Proliferation, 2016, 49, 115-121.	2.4	65
301	High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities. Journal of Industrial and Engineering Chemistry, 2016, 36, 13-29.	2.9	94
302	Future sustainability scenarios for universities: moving beyond the United Nations Decade of Education for Sustainable Development. Journal of Cleaner Production, 2016, 112, 3464-3478.	4.6	161
303	Ultrasound-targeted microbubble destruction: toward a new strategy for diabetes treatment. Drug Discovery Today, 2016, 21, 540-543.	3.2	11
304	Silver- and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: Activity against multidrug-resistant bacterial strains isolated from patients with burns. Burns, 2016, 42, 131-140.	1.1	37
305	Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Critical Reviews in Biotechnology, 2016, 36, 705-715.	5.1	56
306	Synthesis, Physico-chemical Characteristics And Cellular Behavior Of Poly (lactic-co-glycolic Acid)/Gelatin Nanofibrous Scaffolds For Engineering Soft Connective Tissues. Advanced Materials Letters, 2016, 7, 163-169.	0.3	18

#	Article	IF	Citations
307	Determination of superlattice effect on metal–ceramic nano-structures. Results in Physics, 2015, 5, 241-249.	2.0	8
308	Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients. Burns, 2015, 41, 1488-1497.	1.1	62
309	Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS). Journal of Materials Science: Materials in Medicine, 2015, 26, 274.	1.7	45
310	Fabrication and characterization of electrospun poly- L -lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering. Progress in Natural Science: Materials International, 2015, 25, 405-413.	1.8	31
311	Synthesis and characterization of nanocrystalline forsterite coated poly(l-lactide-co- \hat{l}^2 -malic acid) scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 2015, 50, 117-123.	3.8	27
312	Spectral and Thermal Characterization of Halogen-Bonded Novel Crystalline Oligo(p-bromoacetophenone formaldehyde). Journal of Physical Chemistry B, 2015, 119, 3223-3230.	1.2	8
313	Development of a Costâ€Effective and Simple Protocol for Decellularization and Preservation of Human Amniotic Membrane as a Soft Tissue Replacement and Delivery System for Bone Marrow Stromal Cells. Advanced Healthcare Materials, 2015, 4, 918-926.	3.9	72
314	Optimization of fluoride-containing bioactive glasses as a novel scolicidal agent adjunct to hydatid surgery. Acta Tropica, 2015, 148, 105-114.	0.9	26
315	Energy in sustainability research: A recent rise to prominence. Renewable and Sustainable Energy Reviews, 2015, 51, 1794-1795.	8.2	6
316	The effect of heat-treatment on the structural characteristics of nanocrystalline chlorapatite particles synthesized via an in situ wet-chemical route. Ceramics International, 2015, 41, 13100-13104.	2.3	10
317	A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrasonics Sonochemistry, 2015, 27, 395-402.	3.8	58
318	Effects of processing conditions on the physico-chemical characteristics of titanium dioxide ultra-thin films deposited by DC magnetron sputtering. Ceramics International, 2015, 41, 7977-7981.	2.3	10
319	Detection and qualification of optimum antibacterial and cytotoxic activities of silverâ€doped bioactive glasses. IET Nanobiotechnology, 2015, 9, 209-214.	1.9	29
320	Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: <i>in vitro</i> and <i>in vivo</i> studies. Biotechnology and Applied Biochemistry, 2015, 62, 785-794.	1.4	48
321	<i>In vitro</i> and <i>in vivo</i> evaluations of threeâ€dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds. Biotechnology and Applied Biochemistry, 2015, 62, 441-450.	1.4	45
322	Multi-objective optimization of reaction parameters and kinetic studies of cobalt disulfide nanoparticles. Powder Technology, 2015, 269, 488-494.	2.1	2
323	Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: A therapeutic design for on-demand drug delivery. Materials Letters, 2015, 138, 16-20.	1.3	55
324	How Ethanol Treatment Affects The Physico-chemical And Biological Characteristics Of Silk Fibroin Nanofibrous Scaffolds. Advanced Materials Letters, 2015, 6, 391-394.	0.3	4

#	Article	lF	CITATIONS
325	The effects of resveratrol in rats with simultaneous type 2 diabetes and renal hypertension: a study of antihypertensive mechanisms. Iranian Journal of Medical Sciences, 2015, 40, 152-60.	0.3	12
326	Synthesis and Characterization of Poly(lactic-co-glycolic) Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects. BioMed Research International, 2014, 2014, 1-9.	0.9	57
327	Design of hard surfaces with metal (Hf/V) nitride multinanolayers. Journal of Superhard Materials, 2014, 36, 366-380.	0.5	6
328	Electrospun Nanofibers: From Filtration Membranes to Highly Specialized Tissue Engineering Scaffolds. Journal of Nanoscience and Nanotechnology, 2014, 14, 522-534.	0.9	86
329	The effect of hyaluronic acid on biofunctionality of gelatin–collagen intestine tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 3130-3139.	2.1	47
330	Synthesis and characterisation of poly(lactideâ€coâ€glycolide) nanospheres using vitamin E emulsifier prepared through oneâ€step oilâ€inâ€water emulsion and solvent evaporation techniques. IET Nanobiotechnology, 2014, 8, 257-262.	1.9	8
331	On the use of nanoliposomes as soft templates for controlled nucleation and growth of hydroxyapatite nanocrystals under hydrothermal conditions. Ceramics International, 2014, 40, 9377-9381.	2.3	20
332	Taguchi based fuzzy logic optimization of multiple quality characteristics of cobalt disulfide nanostructures. Journal of Alloys and Compounds, 2014, 607, 61-66.	2.8	5
333	Energy Harvesting Capability of Lipidâ€Merocyanine Macromolecules: A New Design and Performance Model Development. Photochemistry and Photobiology, 2014, 90, 517-521.	1.3	O
334	Synthesis, characterization and biocompatibility evaluation of sol–gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 2014, 40, 5349-5355.	2.3	27
335	Towards an orientation of higher education in the post Rio+20 process: How is the game changing?. Futures, 2014, 63, 49-67.	1.4	41
336	Innovative surface modification of orthopaedic implants with positive effects on wettability and <i>in vitro</i> anti-corrosion performance. Surface Engineering, 2014, 30, 688-692.	1.1	29
337	A systematic study on metal-assisted chemical etching of high aspect ratio silicon nanostructures. Journal of Alloys and Compounds, 2014, 616, 442-448.	2.8	17
338	Bioceramics in the Realm of History. Bioceramics Development and Applications, 2014, 4, .	0.3	14
339	Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Materials Science and Engineering C, 2013, 33, 4777-4785.	3.8	67
340	Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): In vitro study. Bulletin of Materials Science, 2013, 36, 1339-1346	0.8	24
341	Electrical discharge machining characteristics of nickel–titanium shape memory alloy based on full factorial design. Journal of Intelligent Material Systems and Structures, 2013, 24, 1546-1556.	1.4	54
342	Self-assembly of PbS hollow sphere quantum dots via gas–bubble technique for early cancer diagnosis. Journal of Luminescence, 2013, 133, 188-193.	1.5	34

#	Article	IF	CITATIONS
343	How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues?. Carbohydrate Polymers, 2013, 93, 635-643.	5.1	60
344	Multilayer zirconium titanate thin films prepared by a sol–gel deposition method. Ceramics International, 2013, 39, 1271-1276.	2.3	37
345	Biological response of a recently developed nanocomposite based on calcium phosphate cement and sol–gel derived bioactive glass fibers as substitution of bone tissues. Ceramics International, 2013, 39, 289-297.	2.3	22
346	Synthesis, characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77. Ceramics International, 2013, 39, 2353-2358.	2.3	54
347	How bone marrow-derived human mesenchymal stem cells respond to poorly crystalline apatite coated orthopedic and dental titanium implants. Ceramics International, 2013, 39, 7793-7802.	2.3	12
348	Characteristics improvement of calcium hydroxide dental cement by hydroxyapatite nanoparticles. Part 1: Formulation and microstructure. Biotechnology and Applied Biochemistry, 2013, 60, 502-509.	1.4	9
349	A new double-layer sol–gel coating to improve the corrosion resistance of a medical-grade stainless steel in a simulated body fluid. Materials Letters, 2013, 97, 162-165.	1.3	44
350	Calcium hydroxide-modified zinc polycarboxylate dental cements. Ceramics International, 2013, 39, 9525-9532.	2.3	16
351	In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants. PLoS ONE, 2013, 8, e61633.	1.1	52
352	Surface Modification of Stainless Steel Orthopedic Implants by Sol–Gel ZrTiO ₄ and ZrTiO ₄ –PMMA Coatings. Journal of Biomedical Nanotechnology, 2013, 9, 1327-1335.	0.5	76
353	The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications. BioMed Research International, 2013, 2013, 1-8.	0.9	62
354	Nanoencapsulation of <i>Hypericum perforatum</i> and doxorubicin anticancer agents in PLGA nanoparticles through double emulsion technique. Micro and Nano Letters, 2013, 8, 243-247.	0.6	19
355	<i>Withdrawn</i> : Performance enhancement of electrospun carbon fibrous nanostructures. Journal of Applied Polymer Science, 2013, 129, 3077-3077.	1.3	2
356	Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry. International Journal of Nanomedicine, 2013, 8, 1665.	3.3	67
357	The Effect of Hyaluronic Acid on Biofunctionality of Gelatin-Collagen Tissue Engineering Scaffolds. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	2.1	2
358	Structural Configuration of Myelin Figures Using Fluorescence Microscopy. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	10
359	Application of Fuzzy TOPSIS for group decision making in evaluating financial risk management. , 2012, , .		6
360	Differential Thermal Analysis of Nanostructured Si0.80Ge0.20 Thermoelectric Material., 2012,,.		1

#	Article	IF	Citations
361	Thermal Stability of Lead Sulfide Nanocrystals Synthesized through Green Chemical Route. , 2012, , .		2
362	Effects of heat treatment on physical, microstructural and optical characteristics of PbS luminescent nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1429-1435.	1.3	7
363	Zirconium titanate thin film prepared by an aqueous particulate sol–gel spin coating process using carboxymethyl cellulose as dispersant. Materials Letters, 2012, 88, 5-8.	1.3	40
364	Sol–gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1-x)CaO–xSrO–P2O5 dried-gel. Journal of Non-Crystalline Solids, 2012, 358, 342-348.	1.5	15
365	A critical stress model for cell motility. Theoretical Biology and Medical Modelling, 2012, 9, 49.	2.1	3
366	Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine, 2012, 7, 25.	3.3	205
367	Synthesis and Characterization of Doxorubicin-Loaded Poly(Lactide-co-glycolide) Nanoparticles as a Sustained-Release Anticancer Drug Delivery System. Applied Biochemistry and Biotechnology, 2012, 168, 1434-1447.	1.4	41
368	Fabrication and Characterization of PLLA/Chitosan/Nano Calcium Phosphate Scaffolds by Freeze-Casting Technique. Industrial & Engineering Chemistry Research, 2012, 51, 9241-9249.	1.8	34
369	Thermal and Thermoelectric Properties of Nanostructured versus Crystalline SiGe. , 2012, , .		2
370	Antibacterial activity of silver photodeposited nepheline thin film coatings. Ceramics International, 2012, 38, 5445-5451.	2.3	33
371	Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal (English Edition), 2012, 21, 713-720.	1.3	27
372	Biological Response of Biphasic Hydroxyapatite/Tricalcium Phosphate Scaffolds Intended for Low Load-Bearing Orthopaedic Applications. Advanced Composites Letters, 2012, 21, 096369351202100.	1.3	23
373	Enhancement of fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceramics International, 2012, 38, 5007-5014.	2.3	62
374	Simulation of structural features on mechanochemical synthesis of Al2O3–TiB2 nanocomposite by optimized artificial neural network. Advanced Powder Technology, 2012, 23, 220-227.	2.0	21
375	Three-dimensional simulation of turbulent flow in a membrane tube filled with semi-circular baffles. Desalination, 2012, 294, 8-16.	4.0	21
376	Chitosan-surface modified poly(lactide-co-glycolide) nanoparticles as an effective drug delivery system. , $2011, , .$		2
377	Novel porous gelatin/bioactive glass scaffolds with controlled pore structure engineered via compound techniques for bone tissue engineering. , $2011,\ldots$		2
378	Green synthesis of well-defined spherical PbS quantum dots and its potential in biomedical imaging research and biosensing. , 2011 , , .		5

#	Article	IF	Citations
379	Preparation of laminated poly($\hat{l}\mu$ -caprolactone)-gelatin-hydroxyapatite nanocomposite scaffold bioengineered via compound techniques for bone substitution. Biomatter, 2011, 1, 91-101.	2.6	45
380	Synthesis and Characterization of High-Pure Nanocrystalline Forsterite and its Potential for Soft Tissue Applications. Advanced Composites Letters, 2011, 20, 096369351102000.	1.3	2
381	Microstructural and optical properties of spherical lead sulphide quantum dots-based optical sensors. Micro and Nano Letters, 2011, 6, 161.	0.6	23
382	lon exchange behaviour of silver-doped apatite micro- and nanoparticles as antibacterial biomaterial. Micro and Nano Letters, 2011, 6, 713.	0.6	46
383	Surface modification of poly(lactide-co-glycolide) nanoparticles by d-α-tocopheryl polyethylene glycol 1000 succinate as potential carrier for the delivery of drugs to the brain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392, 335-342.	2.3	32
384	Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications. Ceramics International, 2011, 37, 2007-2014.	2.3	75
385	Synergistically reinforcement of a self-setting calcium phosphate cement with bioactive glass fibers. Ceramics International, 2011, 37, 927-934.	2.3	47
386	Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids and Surfaces B: Biointerfaces, 2011, 84, 310-316.	2.5	89
387	Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: State of the art. Colloids and Surfaces B: Biointerfaces, 2011, 86, 390-396.	2.5	39
388	Calcium Fluoride/Hydroxyfluorapatite Nanocrystals as Novel Biphasic Solid Solution for Tooth Tissue Engineering and Regenerative Dentistry. Key Engineering Materials, 2011, 493-494, 626-631.	0.4	7
389	Green synthesis and characterisation of spherical PbS luminescent micro―and nanoparticles via wet chemical technique. Advances in Applied Ceramics, 2011, 110, 30-34.	0.6	33
390	Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds. Applied Surface Science, 2010, 257, 1740-1749.	3.1	103
391	Controllable synthesis, characterization and optical properties of colloidal PbS/gelatin core–shell nanocrystals. Journal of Colloid and Interface Science, 2010, 351, 442-448.	5.0	40
392	Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceramics International, 2010, 36, 2431-2439.	2.3	109
393	Development of 3D Bioactive Nanocomposite Scaffolds Made from Gelatin and Nano Bioactive Glass for Biomedical Applications. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	37
394	A Proposed Fabrication Method of Novel PCL-GEL-HAp Nanocomposite Scaffolds for Bone Tissue Engineering Applications. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	33
395	Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. Journal of Non-Crystalline Solids, 2010, 356, 1470-1478.	1.5	110
396	Novel Bioactive Poly($\hat{l}\mu$ -caprolactone)-Gelatin-Hydroxyapatite Nanocomposite Scaffolds for Bone Regeneration. Key Engineering Materials, 0, 493-494, 909-915.	0.4	8

#	Article	IF	CITATIONS
397	Effect of Silver Concentration on Bioactivity and Antibacterial Properties of SiO ₂ -CaO-P ₂ 0 ₅ Sol-Gel Derived Bioactive Glass. Key Engineering Materials, 0, 493-494, 74-79.	0.4	3
398	<i>In Vitro</i> Evaluations of a Mechanically Optimized Calcium Phosphate Cement as a Filler for Bone Repair . Key Engineering Materials, 0, 493-494, 209-214.	0.4	2
399	Electroconductive Nanocomposite Scaffolds: A New Strategy Into Tissue Engineering and Regenerative Medicine., 0,,.		18
400	Synthesis and characterization of an engineered dual crosslinked hydrogel system based on hyaluronic acid, chondroitin sulfate, and carboxymethyl chitosan with plateletâ€rich plasma. Polymers for Advanced Technologies, 0, , .	1.6	0