
Ying Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505563/publications.pdf Version: 2024-02-01

Уилс 7ноц

#	Article	IF	CITATIONS
1	Dual Optimization of Bulk and Surface via Guanidine Halide for Efficient and Stable 2D/3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	30
2	The use of acids in the exfoliation of carbon nanotubes and its application toward fabricating chemically stable and highly conducting transparent films. Applied Surface Science, 2020, 515, 146027.	6.1	12
3	Highly conducting, durable and large area carbon nanotube thick films for stretchable and flexible electrodes. Applied Physics Letters, 2019, 114, .	3.3	9
4	A highly durable, stretchable, transparent and conductive carbon nanotube–polymeric acid hybrid film. Nanoscale, 2019, 11, 3804-3813.	5.6	43
5	Nonuniform functional group distribution of carbon nanotubes studied by energy dispersive X-ray spectrometry imaging in SEM. Nanoscale, 2019, 11, 21487-21492.	5.6	11
6	Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films. Japanese Journal of Applied Physics, 2018, 57, 065101.	1.5	3
7	Structures and Fluorescence Properties for the Crystals, Powders, and Thin Films of Dithienylhexatrienes: Effects of Positional Isomerism. Crystal Growth and Design, 2018, 18, 6477-6487.	3.0	5
8	Optically pumped lasing in solution-processed perovskite semiconducting materials: Self-assembled Fabry–Pérot microcavity. Japanese Journal of Applied Physics, 2017, 56, 04CL07.	1.5	12
9	Epitaxial Growth of C ₆₀ on Rubrene Single Crystals for a Highly Ordered Organic Donor/Acceptor Interface. Crystal Growth and Design, 2017, 17, 4622-4627.	3.0	17
10	Constructing Nanostructured Donor/Acceptor Bulk Heterojunctions via Interfacial Templates for Efficient Organic Photovoltaics. ACS Applied Materials & Interfaces, 2017, 9, 43893-43901.	8.0	5
11	Optical pumped lasing in solution processed perovskite semiconducting materials: Self-assembled microdisk lasing. Japanese Journal of Applied Physics, 2016, 55, 04ES02.	1.5	18
12	Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Science and Technology of Advanced Materials, 2016, 17, 493-516.	6.1	125
13	Fabrication of carbon nanotube hybrid films as transparent electrodes for small-molecule photovoltaic cells. RSC Advances, 2016, 6, 25062-25069.	3.6	10
14	Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks. Journal of Applied Physics, 2015, 118, 215305.	2.5	15
15	Building interconnects in carbon nanotube networks with metal halides for transparent electrodes. Carbon, 2015, 87, 61-69.	10.3	24
16	Understanding Device-Structure-Induced Variations in Open-Circuit Voltage for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 10814-10822.	8.0	2
17	Morphological analysis of co-evaporated blend films based on initial growth for organic photovoltaics. Applied Surface Science, 2015, 355, 1261-1266.	6.1	1
18	Efficient small-molecule photovoltaic cells using nanostructured template. Proceedings of SPIE, 2014, , .	0.8	1

Үінд Хнои

#	Article	IF	CITATIONS
19	Structural influences on charge carrier dynamics for small-molecule organic photovoltaics. Journal of Applied Physics, 2014, 116, 013105.	2.5	6
20	Low temperature TiOx compact layer by chemical bath deposition method for vapor deposited perovskite solar cells. , 2014, , .		2
21	Heteroepitaxial growth of C ₆₀ on tetracene single crystal. Materials Research Society Symposia Proceedings, 2013, 1501, 1.	0.1	6
22	Efficient Smallâ€Molecule Photovoltaic Cells Using a Crystalline Diindenoperylene Film as a Nanostructured Template. Advanced Materials, 2013, 25, 6069-6075.	21.0	39
23	Structural modifications of zinc phthalocyanine thin films for organic photovoltaic applications. Journal of Applied Physics, 2012, 111, .	2.5	13
24	Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics. Applied Physics Letters, 2012, 100, 233302.	3.3	50
25	Glancing Angle Deposition of Copper Iodide Nanocrystals for Efficient Organic Photovoltaics. Nano Letters, 2012, 12, 4146-4152.	9.1	92
26	Size and shape controlled LiMnPO4 nanocrystals by a supercritical ethanol process and their electrochemical properties. Journal of Materials Chemistry, 2011, 21, 15813.	6.7	74
27	Controlled growth of dibenzotetraphenylperiflanthene thin films by varying substrate temperature for photovoltaic applications. Solar Energy Materials and Solar Cells, 2011, 95, 2861-2866.	6.2	20
28	Controlled growth off ZnPc thin filmss for phootovoltaic appplications. Physics Procedia, 2011, 14, 221-225.	1.2	3
29	Thickness dependence of the structural and dielectric properties of epitaxial ZrO ₂ films grown by limited reaction sputtering. Journal Physics D: Applied Physics, 2009, 42, 205406.	2.8	12
30	Improved Dielectric Properties of Tetragonal ZrO2Gate Dielectric Fabricated by Ozone-Assisted Sputtering. Japanese Journal of Applied Physics, 2009, 48, 060208.	1.5	3
31	The modifications of the surface wettability of amorphous carbon films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 335, 128-132.	4.7	24
32	Preparation of ZrO2 ultrathin films as gate dielectrics by limited reaction sputtering—On growth delay time at initial growth stage. Applied Surface Science, 2008, 254, 6131-6134.	6.1	3
33	Improvement of dielectric properties of ZrO <inf>2</inf> films prepared by limited reaction sputtering. , 2008, , .		0
34	Growth and dielectric properties of tetragonal ZrO ₂ films by limited reaction sputtering. Journal Physics D: Applied Physics, 2008, 41, 175414.	2.8	21
35	Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity. Applied Surface Science, 2006, 253, 2690-2694.	6.1	86
36	SUPERHYDROPHOBIC SURFACES PREPARED BY PLASMA FLUORINATION OF LOTUS-LEAF-LIKE AMORPHOUS CARBON FILMS. Surface Review and Letters, 2006, 13, 117-122.	1.1	17