Darryl Fong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505538/publications.pdf

Version: 2024-02-01

713013 686830 30 501 13 21 citations h-index g-index papers 32 32 32 479 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical Science, 2017, 8, 7292-7305.	3.7	78
2	Trace Ethylene Sensing via Wacker Oxidation. ACS Central Science, 2020, 6, 507-512.	5.3	48
3	Complex Liquid Crystal Emulsions for Biosensing. Journal of the American Chemical Society, 2021, 143, 9177-9182.	6.6	46
4	Influence of Polymer Electronics on Selective Dispersion of Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14560-14566.	1.7	37
5	A Survey of Strainâ€Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry. Chemistry - A European Journal, 2021, 27, 5057-5073.	1.7	34
6	Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film Transistors. Chemistry of Materials, 2019, 31, 2863-2872.	3.2	25
7	Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. Journal of the American Chemical Society, 2021, 143, 4397-4404.	6.6	25
8	Functionalization of polyfluorene-wrapped carbon nanotubes <i>via</i> copper-mediated azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 2873-2879.	1.9	23
9	Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne Cycloaddition. Macromolecules, 2018, 51, 755-762.	2.2	22
10	Decoration of polyfluorene-wrapped carbon nanotube thin films ⟨i⟩via⟨ i⟩ strain-promoted azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 4460-4467.	1.9	20
11	Excess Polymer in Single-Walled Carbon Nanotube Thin-Film Transistors: Its Removal Prior to Fabrication Is Unnecessary. ACS Nano, 2021, 15, 8252-8266.	7.3	20
12	Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an Acidochromic Switch via Azide–Alkyne Cycloaddition. ACS Applied Polymer Materials, 2019, 1, 797-803.	2.0	15
13	Visible Light-Mediated Photoclick Functionalization of a Conjugated Polymer Backbone. Macromolecules, 2020, 53, 1760-1766.	2.2	15
14	Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS Omega, 2018, 3, 13935-13943.	1.6	14
15	Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules, 2017, 50, 8002-8009.	2.2	13
16	Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega, 2018, 3, 16238-16245.	1.6	13
17	^{99m} Tc-Functionalized Single-Walled Carbon Nanotubes for Bone Targeting. ACS Applied Nano Materials, 2020, 3, 11819-11824.	2.4	13
18	Dispersion of singleâ€walled carbon nanotubes using nucleobaseâ€containing poly(acrylamide) polymers. Journal of Polymer Science Part A, 2017, 55, 2611-2617.	2.5	7

#	Article	IF	CITATIONS
19	Stretchable and Resilient Conductive Films on Polydimethylsiloxane from Reactive Polymer-Single-Walled Carbon Nanotube Complexes for Wearable Electronics. ACS Applied Nano Materials, 2019, 2, 4968-4973.	2.4	7
20	Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polymer Chemistry, 2019, 10, 6440-6446.	1.9	7
21	Preparation of stimulusâ€responsive, polyfluoreneâ€wrapped carbon nanotubes via palladium cross coupling. Journal of Polymer Science Part A, 2018, 56, 2723-2729.	2.5	6
22	Bulk dispersion of singleâ€walled carbon nanotubes in silicones using diblock copolymers. Journal of Polymer Science Part A, 2015, 53, 265-273.	2.5	5
23	Lightâ€driven atom transfer radical polymerization on supramolecular complexes of conjugated polymers and singleâ€walled carbon nanotubes. Journal of Polymer Science Part A, 2019, 57, 2015-2020.	2.5	3
24	Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14413-14413.	1.7	1
25	Strainâ€promoted azideâ€alkyne cycloaddition polymerization as a route toward tailored functional polymers. Journal of Polymer Science, 2021, 59, 29-33.	2.0	1
26	3D Aromaticity: Two Wrongs Do Make a Right in Antiaromatic Cyclophanes. Synfacts, 2019, 15, 1126.	0.0	0
27	Emerging from the Flatlands Using Diels–Alder Cycloaddition. Synfacts, 2019, 15, 1125.	0.0	O
28	Proton Hole-in-One With TriQuinoline. Synfacts, 2019, 15, 1250.	0.0	0
29	Coming Full Circle With â€~Super-Benzene'. Synfacts, 2019, 15, 1370.	0.0	0
30	Frontispiece: A Survey of Strainâ€Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry. Chemistry - A European Journal, 2021, 27, .	1.7	0