## Darryl Fong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505538/publications.pdf Version: 2024-02-01



DADDYL FONC

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical Science, 2017, 8, 7292-7305.                                            | 7.4  | 78        |
| 2  | Trace Ethylene Sensing via Wacker Oxidation. ACS Central Science, 2020, 6, 507-512.                                                                                                           | 11.3 | 48        |
| 3  | Complex Liquid Crystal Emulsions for Biosensing. Journal of the American Chemical Society, 2021, 143, 9177-9182.                                                                              | 13.7 | 46        |
| 4  | Influence of Polymer Electronics on Selective Dispersion of Singleâ€Walled Carbon Nanotubes.<br>Chemistry - A European Journal, 2016, 22, 14560-14566.                                        | 3.3  | 37        |
| 5  | A Survey of Strainâ€Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry. Chemistry - A European<br>Journal, 2021, 27, 5057-5073.                                                         | 3.3  | 34        |
| 6  | Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film<br>Transistors. Chemistry of Materials, 2019, 31, 2863-2872.                                  | 6.7  | 25        |
| 7  | Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. Journal of the American<br>Chemical Society, 2021, 143, 4397-4404.                                                         | 13.7 | 25        |
| 8  | Functionalization of polyfluorene-wrapped carbon nanotubes <i>via</i> copper-mediated azide–alkyne<br>cycloaddition. Polymer Chemistry, 2018, 9, 2873-2879.                                   | 3.9  | 23        |
| 9  | Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne<br>Cycloaddition. Macromolecules, 2018, 51, 755-762.                                                     | 4.8  | 22        |
| 10 | Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> strain-promoted azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 4460-4467.                                   | 3.9  | 20        |
| 11 | Excess Polymer in Single-Walled Carbon Nanotube Thin-Film Transistors: Its Removal Prior to<br>Fabrication Is Unnecessary. ACS Nano, 2021, 15, 8252-8266.                                     | 14.6 | 20        |
| 12 | Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an<br>Acidochromic Switch via Azide–Alkyne Cycloaddition. ACS Applied Polymer Materials, 2019, 1, 797-803. | 4.4  | 15        |
| 13 | Visible Light-Mediated Photoclick Functionalization of a Conjugated Polymer Backbone.<br>Macromolecules, 2020, 53, 1760-1766.                                                                 | 4.8  | 15        |
| 14 | Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. ACS Omega, 2018, 3, 13935-13943.                                                                                                     | 3.5  | 14        |
| 15 | Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon<br>Nanotubes. Macromolecules, 2017, 50, 8002-8009.                                              | 4.8  | 13        |
| 16 | Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega, 2018,<br>3, 16238-16245.                                                                            | 3.5  | 13        |
| 17 | <sup>99m</sup> Tc-Functionalized Single-Walled Carbon Nanotubes for Bone Targeting. ACS Applied<br>Nano Materials, 2020, 3, 11819-11824.                                                      | 5.0  | 13        |
| 18 | Dispersion of singleâ€walled carbon nanotubes using nucleobaseâ€containing poly(acrylamide) polymers.<br>Journal of Polymer Science Part A, 2017, 55, 2611-2617.                              | 2.3  | 7         |

Darryl Fong

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stretchable and Resilient Conductive Films on Polydimethylsiloxane from Reactive<br>Polymer-Single-Walled Carbon Nanotube Complexes for Wearable Electronics. ACS Applied Nano<br>Materials, 2019, 2, 4968-4973. | 5.0 | 7         |
| 20 | Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes.<br>Polymer Chemistry, 2019, 10, 6440-6446.                                                                          | 3.9 | 7         |
| 21 | Preparation of stimulusâ€responsive, polyfluoreneâ€wrapped carbon nanotubes via palladium cross<br>coupling. Journal of Polymer Science Part A, 2018, 56, 2723-2729.                                             | 2.3 | 6         |
| 22 | Bulk dispersion of singleâ€walled carbon nanotubes in silicones using diblock copolymers. Journal of<br>Polymer Science Part A, 2015, 53, 265-273.                                                               | 2.3 | 5         |
| 23 | Lightâ€driven atom transfer radical polymerization on supramolecular complexes of conjugated polymers and singleâ€walled carbon nanotubes. Journal of Polymer Science Part A, 2019, 57, 2015-2020.               | 2.3 | 3         |
| 24 | Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes.<br>Chemistry - A European Journal, 2016, 22, 14413-14413.                                                            | 3.3 | 1         |
| 25 | Strainâ€promoted azideâ€alkyne cycloaddition polymerization as a route toward tailored functional polymers. Journal of Polymer Science, 2021, 59, 29-33.                                                         | 3.8 | 1         |
| 26 | 3D Aromaticity: Two Wrongs Do Make a Right in Antiaromatic Cyclophanes. Synfacts, 2019, 15, 1126.                                                                                                                | 0.0 | 0         |
| 27 | Emerging from the Flatlands Using Diels–Alder Cycloaddition. Synfacts, 2019, 15, 1125.                                                                                                                           | 0.0 | 0         |
| 28 | Proton Hole-in-One With TriQuinoline. Synfacts, 2019, 15, 1250.                                                                                                                                                  | 0.0 | 0         |
| 29 | Coming Full Circle With â€~Super-Benzene'. Synfacts, 2019, 15, 1370.                                                                                                                                             | 0.0 | 0         |
| 30 | Frontispiece: A Survey of Strainâ€Promoted Azide–Alkyne Cycloaddition in Polymer Chemistry.<br>Chemistry - A European Journal, 2021, 27, .                                                                       | 3.3 | 0         |