Luke Norton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505488/publications.pdf

Version: 2024-02-01

218677 223800 3,381 46 26 h-index citations papers

g-index 49 49 49 4934 docs citations times ranked citing authors all docs

46

#	Article	IF	CITATIONS
1	Effects of Sustained Hyperglycemia on Skeletal Muscle Lipids in Healthy Subjects. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3177-e3185.	3.6	4
2	FGF21 contributes to metabolic improvements elicited by combination therapy with exenatide and pioglitazone in patients with type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E123-E132.	3.5	4
3	Further evidence supporting a potential role for ADH1B in obesity. Scientific Reports, 2021, 11, 1932.	3.3	11
4	Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury. JCI Insight, 2021, 6, .	5.0	8
5	Insulin resistance is mechanistically linked to hepatic mitochondrial remodeling in non-alcoholic fatty liver disease. Molecular Metabolism, 2021, 45, 101154.	6.5	33
6	Therapeutic Manipulation of Myocardial Metabolism. Journal of the American College of Cardiology, 2021, 77, 2022-2039.	2.8	40
7	The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Frontiers in Physiology, 2021, 12, 784391.	2.8	13
8	Lactate Elicits ER-Mitochondrial Mg2+ Dynamics to Integrate Cellular Metabolism. Cell, 2020, 183, 474-489.e17.	28.9	84
9	Regulation of ANGPTL8 in liver and adipose tissue by nutritional and hormonal signals and its effect on glucose homeostasis in mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E613-E624.	3.5	14
10	Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Science Signaling, 2020, 13 , .	3.6	48
11	The tumor suppressor TMEM127 regulates insulin sensitivity in a tissue-specific manner. Nature Communications, 2019, 10, 4720.	12.8	14
12	Blockade of MCU-Mediated Ca2+ Uptake Perturbs Lipid Metabolism via PP4-Dependent AMPK Dephosphorylation. Cell Reports, 2019, 26, 3709-3725.e7.	6.4	58
13	The Diabetes Gene and Wnt Pathway Effector TCF7L2 Regulates Adipocyte Development and Function. Diabetes, 2018, 67, 554-568.	0.6	94
14	Effect of Chronic Hyperglycemia on Glucose Metabolism in Subjects With Normal Glucose Tolerance. Diabetes, 2018, 67, 2507-2517.	0.6	26
15	Empagliflozin and Kinetics of Renal Glucose Transport in Healthy Individuals and Individuals With Type 2 Diabetes. Diabetes, 2017, 66, 1999-2006.	0.6	67
16	Sodiumâ€glucose coâ€transporter (<scp>SGLT</scp>) and glucose transporter (<scp>GLUT</scp>) expression in the kidney of type 2 diabetic subjects. Diabetes, Obesity and Metabolism, 2017, 19, 1322-1326.	4.4	74
17	Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology, 2017, 13, 11-26.	9.6	398
18	Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS Journal, 2017, 284, 451-465.	4.7	27

#	Article	IF	CITATIONS
19	FGF21 Is an Insulin-Dependent Postprandial Hormone in Adult Humans. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3806-3813.	3.6	54
20	Increased lipid availability for three days reduces whole body glucose uptake, impairs muscle mitochondrial function and initiates opposing effects on PGC- $\hat{1}$ ± promoter methylation in healthy subjects. PLoS ONE, 2017, 12, e0188208.	2.5	6
21	Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes. Diabetes Care, 2016, 39, 2036-2041.	8.6	155
22	Revitalization of pioglitazone: the optimum agent to be combined with a sodiumâ€glucose coâ€transporterâ€2 inhibitor. Diabetes, Obesity and Metabolism, 2016, 18, 454-462.	4.4	44
23	Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). PLoS ONE, 2015, 10, e0119941.	2.5	35
24	Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2015, 309, F889-F900.	2.7	113
25	Strong Association Between Insulin-Mediated Glucose Uptake and the 2-Hour, Not the Fasting Plasma Glucose Concentration, in the Normal Glucose Tolerance Range. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3444-3449.	3.6	9
26	The mechanisms of genome-wide target gene regulation by TCF7L2 in liver cells. Nucleic Acids Research, 2014, 42, 13646-13661.	14.5	37
27	Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. Journal of Clinical Investigation, 2014, 124, 509-514.	8.2	661
28	Independent and combined effects of acute physiological hyperglycaemia and hyperinsulinaemia on metabolic gene expression in human skeletal muscle. Clinical Science, 2013, 124, 675-686.	4.3	22
29	Novel Hypothesis to Explain Why SGLT2 Inhibitors Inhibit Only 30–50% of Filtered Glucose Load in Humans. Diabetes, 2013, 62, 3324-3328.	0.6	198
30	Linkage of Type 2 Diabetes on Chromosome 9p24 in Mexican Americans: Additional Evidence from the Veterans Administration Genetic Epidemiology Study (VAGES). Human Heredity, 2013, 76, 36-46.	0.8	4
31	Distinct Â-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes, 2012, 61, 447-453.	0.6	96
32	Efficacy and Safety of SGLT2 Inhibitors in the Treatment of Type 2 Diabetes Mellitus. Current Diabetes Reports, 2012, 12, 230-238.	4.2	97
33	Lentivirus shRNA Grb10 targeting the pancreas induces apoptosis and improved glucose tolerance due to decreased plasma glucagon levels. Diabetologia, 2012, 55, 719-728.	6.3	26
34	Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetologica, 2011, 48, 209-217.	2.5	55
35	Chromatin occupancy of transcription factor 7-like 2 (TCF7L2) and its role in hepatic glucose metabolism. Diabetologia, 2011, 54, 3132-3142.	6.3	79
36	The Relationship Between Â-Cell Function and Glycated Hemoglobin: Results from the Veterans Administration Genetic Epidemiology Study. Diabetes Care, 2011, 34, 1006-1010.	8.6	53

#	Article	lF	CITATION
37	Role of Sodium-Glucose Cotransporter 2 (SGLT 2) Inhibitors in the Treatment of Type 2 Diabetes. Endocrine Reviews, 2011, 32, 515-531.	20.1	344
38	Basal and insulinâ€stimulated pyruvate dehydrogenase complex activation, glycogen synthesis and metabolic gene expression in human skeletal muscle the day after a single bout of exercise. Experimental Physiology, 2010, 95, 808-818.	2.0	14
39	Calpain-10 Gene and Protein Expression in Human Skeletal Muscle: Effect of Acute Lipid-Induced Insulin Resistance and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 992-998.	3.6	8
40	High-Fat/Low-Carbohydrate Diet Reduces Insulin-Stimulated Carbohydrate Oxidation but Stimulates Nonoxidative Glucose Disposal in Humans: An Important Role for Skeletal Muscle Pyruvate Dehydrogenase Kinase 4. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 284-292.	3.6	70
41	Effect of exercise and insulin on SREBP-1c expression in human skeletal muscle: potential roles for the ERK1/2 and Akt signalling pathways. Biochemical Society Transactions, 2007, 35, 1310-1311.	3.4	23
42	Elevated Free Fatty Acids Attenuate the Insulin-Induced Suppression of PDK4 Gene Expression in Human Skeletal Muscle: Potential Role of Intramuscular Long-Chain Acyl-Coenzyme A. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3967-3972.	3.6	58
43	Characterization of GLUT4 and calpain expression in healthy human skeletal muscle during fasting and refeeding. Acta Physiologica, 2007, 189, 233-240.	3.8	18
44	Skeletal muscle fatty acid transporter protein expression in type 2 diabetes patients compared with overweight, sedentary men and age-matched, endurance-trained cyclists. Acta Physiologica, 2007, 190, 209-219.	3.8	22
45	Exercise under hyperinsulinaemic conditions increases whole-body glucose disposal without affecting muscle glycogen utilisation in type 1 diabetes. Diabetologia, 2007, 50, 414-421.	6.3	41
46	Hyperinsulinaemia during exercise does not suppress hepatic glycogen concentrations in patients with type 1 diabetes: a magnetic resonance spectroscopy study. Diabetologia, 2007, 50, 1921-1929.	6.3	22