Pier-Luc Tremblay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The one-step hydrothermal synthesis of CdS nanorods modified with carbonized leaves from Japanese raisin trees for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 15516-15527.	3.8	17
2	Enhanced hydrogen evolution under visible light by a ternary composite photocatalyst made of CdS and MoS2 modified with bacterial cellulose aerogel. Cellulose, 2022, 29, 175-191.	2.4	8
3	A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr3 perovskite solar cell. Journal of Alloys and Compounds, 2022, 902, 163725.	2.8	11
4	Improved polyhydroxybutyrate production by Cupriavidus necator and the photocatalyst graphitic carbon nitride from fructose under low light intensity. International Journal of Biological Macromolecules, 2022, 203, 526-534.	3.6	5
5	Fumarate disproportionation by Geobacter sulfurreducens and its involvement in biocorrosion and interspecies electron transfer. Science of the Total Environment, 2022, 827, 154251.	3.9	6
6	A recyclable colorimetric sensor made of waste cotton fabric for the detection of copper ions. Cellulose, 2022, 29, 5103-5115.	2.4	12
7	Fast-growing cyanobacteria bio-embedded into bacterial cellulose for toxic metal bioremediation. Carbohydrate Polymers, 2022, 295, 119881.	5.1	5
8	Photo-augmented PHB production from CO2 or fructose by Cupriavidus necator and shape-optimized CdS nanorods. Science of the Total Environment, 2021, 753, 142050.	3.9	34
9	Fast removal of toxic hexavalent chromium from an aqueous solution by high-density Geobacter sulfurreducens. Chemosphere, 2021, 263, 128281.	4.2	12
10	Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen. Science of the Total Environment, 2021, 754, 142440.	3.9	17
11	The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha. Carbohydrate Polymers, 2021, 252, 117137.	5.1	22
12	The one-pot synthesis of a ZnSe/ZnS photocatalyst for H2 evolution and microbial bioproduction. International Journal of Hydrogen Energy, 2021, 46, 21901-21911.	3.8	22
13	Impact of electron scavenging during electric current generation from propionate by a Geobacter co-culture. Chemical Engineering Journal, 2021, 418, 129357.	6.6	9
14	Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation. Bioelectrochemistry, 2021, 140, 107750.	2.4	19
15	An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. IScience, 2021, 24, 103019.	1.9	13
16	Nonmetallic Abiotic-Biological Hybrid Photocatalyst for Visible Water Splitting and Carbon Dioxide Reduction. IScience, 2020, 23, 100784.	1.9	42
17	Crystalline CdS/MoS2 shape-controlled by a bacterial cellulose scaffold for enhanced photocatalytic hydrogen evolution. Carbohydrate Polymers, 2020, 250, 116909.	5.1	19
18	Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation?. IScience, 2020, 23, 101787.	1.9	47

PIER-LUC TREMBLAY

#	Article	IF	CITATIONS
19	Selective electrocatalytic reduction of carbon dioxide to formate by a trimetallic Sn-Co/Cu foam electrode. Journal of Electroanalytical Chemistry, 2020, 877, 114623.	1.9	7
20	The hidden chemolithoautotrophic metabolism of <i>Geobacter sulfurreducens</i> uncovered by adaptation to formate. ISME Journal, 2020, 14, 2078-2089.	4.4	27
21	Efficient photocatalytic hydrogen evolution with high-crystallinity and noble metal-free red phosphorus-CdS nanorods. International Journal of Hydrogen Energy, 2020, 45, 17354-17366.	3.8	25
22	Functional Genomics of Metal-Reducing Microbes Degrading Hydrocarbons. , 2020, , 233-253.		0
23	Decorating the Outer Surface of Microbially Produced Protein Nanowires with Peptides. ACS Synthetic Biology, 2019, 8, 1809-1817.	1.9	54
24	Escherichia coli adaptation and response to exposure to heavy atmospheric pollution. Scientific Reports, 2019, 9, 10879.	1.6	17
25	Accelerated H2 Evolution during Microbial Electrosynthesis with Sporomusa ovata. Catalysts, 2019, 9, 166.	1.6	28
26	Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry, 2019, 128, 83-93.	2.4	67
27	Stimulating bioplastic production with light energy by coupling <i>Ralstonia eutropha</i> with the photocatalyst graphitic carbon nitride. Green Chemistry, 2019, 21, 2392-2400.	4.6	43
28	Possible Industrial Applications for Microbial Electrosynthesis From Carbon Dioxide. , 2019, , 825-842.		6
29	Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Polymer Coated Cathode for the Microbial Electrosynthesis of Acetate From Carbon Dioxide. Frontiers in Energy Research, 2018, 6, .	1.2	38
30	Anode Catalysts and Biocatalysts for Microbial Fuel Cells. , 2018, , 143-165.		2
31	An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism. Methods in Molecular Biology, 2018, 1671, 149-161.	0.4	2
32	Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresource Technology, 2017, 233, 184-190.	4.8	125
33	Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process. Bioresource Technology, 2017, 243, 30-36.	4.8	39
34	Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion. Scientific Reports, 2017, 7, 9107.	1.6	55
35	Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces. Trends in Biotechnology, 2017, 35, 360-371.	4.9	163
36	Hybrid photosynthesis-powering biocatalysts with solar energy captured by inorganic devices. Biotechnology for Biofuels, 2017, 10, 249.	6.2	30

PIER-LUC TREMBLAY

#	Article	IF	CITATIONS
37	Functional Genomics of Metal-Reducing Microbes Degrading Hydrocarbons. , 2017, , 1-21.		2
38	Editorial: Current Challenges and Future Perspectives on Emerging Bioelectrochemical Technologies. Frontiers in Microbiology, 2016, 7, 860.	1.5	5
39	Electrosynthesis of acetate from CO ₂ by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine. Journal of Materials Chemistry A, 2016, 4, 8395-8401.	5.2	117
40	Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochimica Acta, 2016, 217, 117-122.	2.6	112
41	Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. Biotechnology for Biofuels, 2016, 9, 163.	6.2	70
42	Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Scientific Reports, 2015, 5, 16168.	1.6	82
43	Structural Basis for Metallic-Like Conductivity in Microbial Nanowires. MBio, 2015, 6, e00084.	1.8	171
44	Electrifying microbes for the production of chemicals. Frontiers in Microbiology, 2015, 6, 201.	1.5	157
45	Genetic evidence that the degradation of <i>para</i> -cresol by <i>Geobacter metallireducens</i> is catalyzed by the periplasmic <i>para</i> -cresol methylhydroxylase. FEMS Microbiology Letters, 2015, 362, fnv145.	0.7	9
46	Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Frontiers in Microbiology, 2014, 5, 245.	1.5	26
47	Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens. PLoS Computational Biology, 2014, 10, e1003575.	1.5	38
48	A Geobacter sulfurreducens Strain Expressing Pseudomonas aeruginosa Type IV Pili Localizes OmcS on Pili but Is Deficient in Fe(III) Oxide Reduction and Current Production. Applied and Environmental Microbiology, 2014, 80, 1219-1224.	1.4	113
49	Going Wireless: Fe(III) Oxide Reduction without Pili by Geobacter sulfurreducens Strain JS-1. Applied and Environmental Microbiology, 2014, 80, 4331-4340.	1.4	84
50	Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens. Applied and Environmental Microbiology, 2013, 79, 7800-7806.	1.4	99
51	Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens. MBio, 2013, 4, e00105-13.	1.8	148
52	Outer Cell Surface Components Essential for Fe(III) Oxide Reduction by Geobacter metallireducens. Applied and Environmental Microbiology, 2013, 79, 901-907.	1.4	100
53	Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens. MBio, 2013, 4, .	1.8	179
54	The Rnf Complex of Clostridium ljungdahlii Is a Proton-Translocating Ferredoxin:NAD ⁺ Oxidoreductase Essential for Autotrophic Growth. MBio, 2013, 4, e00406-12.	1.8	222

PIER-LUC TREMBLAY

#	Article	IF	CITATIONS
55	Role of the NiFe Hydrogenase Hya in Oxidative Stress Defense in Geobacter sulfurreducens. Journal of Bacteriology, 2012, 194, 2248-2253.	1.0	36
56	A genetic system for <i>Geobacter metallireducens</i> : role of the flagellin and pilin in the reduction of Fe(III) oxide. Environmental Microbiology Reports, 2012, 4, 82-88.	1.0	112
57	A câ€ŧype cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in <i>Geobacter sulfurreducens</i> revealed by adaptive evolution. Environmental Microbiology, 2011, 13, 13-23.	1.8	89
58	Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor. Molecular Microbiology, 2009, 71, 12-22.	1.2	45
59	Ammonia-Induced Formation of an AmtB-GlnK Complex Is Not Sufficient for Nitrogenase Regulation in the Photosynthetic Bacterium Rhodobacter capsulatus. Journal of Bacteriology, 2008, 190, 1588-1594.	1.0	19
60	Membrane Sequestration of PII Proteins and Nitrogenase Regulation in the Photosynthetic Bacterium Rhodobacter capsulatus. Journal of Bacteriology, 2007, 189, 5850-5859.	1.0	28