
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505075/publications.pdf Version: 2024-02-01



CUO-PINC YANC

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Metal-organic framework as a mimetic enzyme with excellent adaptability for sensitive chemiluminescence detection of glutathione in cell lysate. Talanta, 2022, 238, 123041.                                                                                          | 5.5  | 11        |
| 2  | White light emission phosphor modulation, nitrobenzene sensing property and barcode<br>anti-counterfeiting via lanthanides post-functionalized metal-organic frameworks. Journal of Solid<br>State Chemistry, 2022, 307, 122854.                                      | 2.9  | 6         |
| 3  | Two novel luminescent metal-organic frameworks based on the thioether bond modification: The selective sensing and effective CO2 fixation. Journal of Solid State Chemistry, 2022, 307, 122813.                                                                       | 2.9  | 2         |
| 4  | N-doped carbon material encapsulated cobalt nanoparticles for bifunctional electrocatalysts derived<br>from a porous Co(II)-based metal-organic frameworks (MOFs). Journal of Solid State Chemistry, 2022,<br>309, 122989.                                            | 2.9  | 3         |
| 5  | Design and Synthesis of Four Newly Water-Stable Pb-Based Heterometallic Organic Frameworks: How<br>Do the Second Metals (Zn, Cd, Co, and Mn) Optimize Their Fluorescent and Catalytic Properties?.<br>Crystal Growth and Design, 2022, 22, 2628-2636.                 | 3.0  | 2         |
| 6  | Recent advances of functional heterometallic-organic framework (HMOF) materials: Design strategies and applications. Coordination Chemistry Reviews, 2022, 463, 214521.                                                                                               | 18.8 | 45        |
| 7  | Lanthanide–Organic Frameworks with Uncoordinated Lewis Base Sites: Tunable Luminescence,<br>Antibiotic Detection, and Anticounterfeiting. Inorganic Chemistry, 2022, 61, 6101-6109.                                                                                   | 4.0  | 23        |
| 8  | Highly Efficient I <sub>2</sub> Sorption, CO <sub>2</sub> Capture, and Catalytic Conversion by<br>Introducing Nitrogen Donor Sites in a Microporous Co(II)-Based Metal–Organic Framework. Inorganic<br>Chemistry, 2022, 61, 7005-7016.                                | 4.0  | 10        |
| 9  | Improved performance of the pyrimidine-modified porous In-MOF and an <i>in situ</i> prepared composite Ag@In-MOF material. Chemical Communications, 2022, 58, 7749-7752.                                                                                              | 4.1  | 7         |
| 10 | Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Metals, 2021, 40, 499-504.                                                                                                                     | 7.1  | 52        |
| 11 | Luminescence tuning and sensing properties of stable 2D lanthanide metal–organic frameworks built<br>with symmetrical flexible tricarboxylic acid ligands containing ether oxygen bonds. CrystEngComm,<br>2021, 23, 411-418.                                          | 2.6  | 13        |
| 12 | Luminescence modulation, near white light emission, selective luminescence sensing, and<br>anticounterfeiting <i>via</i> a series of Ln-MOFs with a ï€-conjugated and uncoordinated lewis basic<br>triazolyl ligand. Inorganic Chemistry Frontiers, 2021, 8, 329-338. | 6.0  | 35        |
| 13 | A new 3D luminescent Ba-organic framework with high open metal sites: CO <sub>2</sub> fixation, luminescence sensing, and dye sorption. CrystEngComm, 2021, 23, 663-670.                                                                                              | 2.6  | 6         |
| 14 | Design and preparation of new luminescent metal–organic frameworks and different doped isomers:<br>sensing pollution ions and enhancement of gas capture capacity. Inorganic Chemistry Frontiers, 2021,<br>8, 286-295.                                                | 6.0  | 25        |
| 15 | Recent progresses in luminescent metal–organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Transactions, 2021, 50, 1950-1972.                                                                                   | 3.3  | 74        |
| 16 | Uncommon thioether-modified metal–organic frameworks with unique selective<br>CO <sub>2</sub> sorption and efficient catalytic conversion. CrystEngComm, 2021, 23, 1447-1454.                                                                                         | 2.6  | 1         |
| 17 | A new porous Co( <scp>ii</scp> )-metal–organic framework for high sorption selectivity and affinity<br>to CO <sub>2</sub> and efficient catalytic oxidation of benzyl alcohols to benzaldehydes.<br>CrystEngComm, 2021, 23, 3717-3723.                                | 2.6  | 18        |
| 18 | A multi-functional two-dimensional Zn( <scp>ii</scp> )-organic framework for selective carbon<br>dioxide adsorption, sensing of nitrobenzene and Cr <sub>2</sub> O <sub>7</sub> <sup>2â^'</sup> .<br>CrystEngComm, 2021, 23, 7643-7649.                               | 2.6  | 7         |

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Microporous Cd(II) Metal–Organic Framework for CO <sub>2</sub> Catalysis, Luminescent Sensing, and Absorption of Methyl Green. Crystal Growth and Design, 2021, 21, 2734-2743.                                                                                                   | 3.0  | 29        |
| 20 | Metal–Organic Frameworks as Heterogeneous Electrocatalysts for Water Splitting and CO <sub>2</sub> Fixation. Crystal Growth and Design, 2021, 21, 3123-3142.                                                                                                                     | 3.0  | 24        |
| 21 | Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.                                                                                                                      | 18.8 | 141       |
| 22 | Ultra-high adsorption selectivity and affinity for CO2 over CH4, and luminescent properties of three<br>new solvents induced Zn(II)-based metal-organic frameworks (MOFs). Journal of Solid State Chemistry,<br>2021, 297, 122054.                                               | 2.9  | 7         |
| 23 | A novel copper-based metal-organic framework as a peroxidase-mimicking enzyme and its glucose chemiluminescence sensing application. Analytical and Bioanalytical Chemistry, 2021, 413, 4407-4416.                                                                               | 3.7  | 29        |
| 24 | N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chemical Society<br>Reviews, 2021, 50, 13559-13586.                                                                                                                                             | 38.1 | 42        |
| 25 | Different Benzendicarboxylate-Directed Structural Variations and Properties of Four New Porous<br>Cd(II)-Pyridyl-Triazole Coordination Polymers. Frontiers in Chemistry, 2020, 8, 616468.                                                                                        | 3.6  | 5         |
| 26 | Highly stable 3D porous HMOF with enhanced catalysis and fine color regulation by the combination of d- and p-ions when compared with those of its monometallic MOFs. Chemical Communications, 2020, 56, 8758-8761.                                                              | 4.1  | 52        |
| 27 | Synthesis of two new Cd(II)-MOFs based on different secondary building units with highly selective gas sorption for CO2/CH4 and luminescent sensor for Fe3+ and Cr2O72â^ ions. Journal of Solid State Chemistry, 2020, 285, 121258.                                              | 2.9  | 10        |
| 28 | Constructions of new luminescent 3D porous MOFs with high stability, unique selectivity and low detection limits for various ions in aqueous solution. Journal of Solid State Chemistry, 2020, 285, 121270.                                                                      | 2.9  | 15        |
| 29 | Rational Stepwise Construction of Different Heterometallic–Organic Frameworks (HMOFs) for<br>Highly Efficient CO <sub>2</sub> Conversion. Chemistry - A European Journal, 2020, 26, 5400-5406.                                                                                   | 3.3  | 18        |
| 30 | Four new metal-organic frameworks based on diverse metal clusters: Syntheses, structures,<br>luminescent sensing and dye adsorption properties. Journal of Solid State Chemistry, 2020, 287, 121336.                                                                             | 2.9  | 10        |
| 31 | Fine-Tuning the Porosities of the Entangled Isostructural Zn(II)-Based Metal–Organic Frameworks<br>with Active Sites by Introducing Different N-Auxiliary Ligands: Selective Gas Sorption and Efficient<br>CO <sub>2</sub> Conversion. Inorganic Chemistry, 2020, 59, 2450-2457. | 4.0  | 20        |
| 32 | A first new porous d–p HMOF material with multiple active sites for excellent<br>CO <sub>2</sub> capture and catalysis. Chemical Communications, 2020, 56, 2395-2398.                                                                                                            | 4.1  | 116       |
| 33 | New Doubly Interpenetrated MOF with [Zn <sub>4</sub> O] Clusters and Its Doped Isomorphic MOF:<br>Sensing, Dye, and Gas Adsorption Capacity. Crystal Growth and Design, 2019, 19, 6774-6783.                                                                                     | 3.0  | 52        |
| 34 | Series of Water-Stable Lanthanide Metal–Organic Frameworks Based on Carboxylic Acid Imidazolium<br>Chloride: Tunable Luminescent Emission and Sensing. Inorganic Chemistry, 2019, 58, 13969-13978.                                                                               | 4.0  | 55        |
| 35 | New porous Co(II)-based metal-organic framework including 1D ferromagnetic chains with highly selective gas adsorption and slow magnetic relaxation. Journal of Solid State Chemistry, 2019, 276, 226-231.                                                                       | 2.9  | 9         |
| 36 | New multifunctional 3D porous metal–organic framework with selective gas adsorption, efficient<br>chemical fixation of CO <sub>2</sub> and dye adsorption. Dalton Transactions, 2019, 48, 7612-7618.                                                                             | 3.3  | 41        |

| #  | Article                                                                                                                                                                                                                                               | IF              | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 37 | Luminescence Sensing of Fe <sup>3+</sup> and Nitrobenzene by Three Isostructural Ln–MOFs<br>Assembled by a Phenylâ€Đicarboxylate Ligand. ChemistrySelect, 2019, 4, 12794-12800.                                                                       | 1.5             | 15                 |
| 38 | Facile Incorporation of Au Nanoparticles into an Unusual Twofold Entangled Zn(II)-MOF with<br>Nanocages for Highly Efficient CO <sub>2</sub> Fixation under Mild Conditions. ACS Applied Materials<br>& Interfaces, 2019, 11, 47437-47445.            | 8.0             | 55                 |
| 39 | Four new water-stable metal-organic frameworks based on diverse metal clusters: Syntheses,<br>structures, and luminescent sensing properties. Journal of Solid State Chemistry, 2019, 269, 386-395.                                                   | 2.9             | 10                 |
| 40 | Two Series of Microporous Lanthanide–Organic Frameworks with Different Secondary Building Units<br>and Exposed Lewis Base Active Sites: Sensing, Dye Adsorption, and Magnetic Properties. Inorganic<br>Chemistry, 2019, 58, 339-348.                  | 4.0             | 63                 |
| 41 | Highly selective luminescence sensing for the detection of nitrobenzene and Fe <sup>3+</sup> by new<br>Cd( <scp>ii</scp> )-based MOFs. CrystEngComm, 2018, 20, 477-486.                                                                               | 2.6             | 119                |
| 42 | Porous Zn(II)-Based Metal–Organic Frameworks Decorated with Carboxylate Groups Exhibiting High<br>Gas Adsorption and Separation of Organic Dyes. Crystal Growth and Design, 2018, 18, 7114-7121.                                                      | 3.0             | 248                |
| 43 | Ln(III)-MOFs (Ln = Tb, Eu, Dy, and Sm) based on triazole carboxylic ligand with carboxylate and nitrogen<br>donors with applications as chemical sensors and magneticÂmaterials. Journal of Coordination<br>Chemistry, 2018, 71, 2702-2713.           | 2.2             | 10                 |
| 44 | Design and synthesis of two energetic coordination polymers based on copper ion and<br>1H,1â€2H-[5,5â€2-bitetrazole]-1,1â€2-diol: A comparative study of the structure-property relationships. Journal of<br>Solid State Chemistry, 2018, 268, 55-61. | 2.9             | 16                 |
| 45 | New Luminescent Three-Dimensional Zn(II)/Cd(II)-Based Metal–Organic Frameworks Showing High<br>H <sub>2</sub> Uptake and CO <sub>2</sub> Selectivity Capacity. Crystal Growth and Design, 2017, 17,<br>2059-2065.                                     | 3.0             | 39                 |
| 46 | High CO <sub>2</sub> Uptake Capacity and Selectivity in a Fascinating Nanotube-Based Metal–Organic<br>Framework. Inorganic Chemistry, 2017, 56, 908-913.                                                                                              | 4.0             | 51                 |
| 47 | Solvent-induced diversity of luminescent metal–organic frameworks based on different secondary building units. RSC Advances, 2017, 7, 46125-46131.                                                                                                    | 3.6             | 8                  |
| 48 | The influence of coordination modes and active sites of a 5-(triazol-1-yl) nicotinic ligand on the assembly of diverse MOFs. Dalton Transactions, 2017, 46, 9784-9793.                                                                                | 3.3             | 11                 |
| 49 | Low-Pressure Selectivity, Stepwise Gas Sorption Behaviors, and Luminescent Properties (Experimental) Tj ETQq1 1<br>Growth and Design, 2017, 17, 3965-3973.                                                                                            | 0.784314<br>3.0 | ł rgBT /Over<br>29 |
| 50 | A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu <sup>2+</sup> ions. Chemical Communications, 2016, 52, 8475-8478.                                                                     | 4.1             | 88                 |
| 51 | The Quantitative Evaluations of the Luminescent Sensing Ability to Cu <sup>2+</sup> Based on Two<br>Homologous Crystalline Coordination Polymers. ChemistrySelect, 2016, 1, 3946-3953.                                                                | 1.5             | 3                  |
| 52 | Four new lanthanide–organic frameworks: selective luminescent sensing and magnetic properties.<br>Dalton Transactions, 2016, 45, 12800-12806.                                                                                                         | 3.3             | 38                 |
| 53 | Structural Modulation from 1D Chain to 3D Framework: Improved Thermostability, Insensitivity, and<br>Energies of Two Nitrogen-Rich Energetic Coordination Polymers. Inorganic Chemistry, 2016, 55,<br>11064-11071.                                    | 4.0             | 39                 |
| 54 | Two Isostructural Metal–Organic Frameworks Directed by the Different Center Metal Ions, Exhibiting the Ferrimagnetic Behavior and Slow Magnetic Relaxation. Inorganic Chemistry, 2016, 55, 6592-6596.                                                 | 4.0             | 45                 |

| #  | ARTICLE                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Four super water-stable lanthanide–organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe <sup>3+</sup> . Dalton Transactions, 2015, 44, 13325-13330.                           | 3.3  | 164       |
| 56 | Three new luminescent Cd( <scp>ii</scp> )-MOFs by regulating the tetracarboxylate and auxiliary co-ligands, displaying high sensitivity for Fe <sup>3+</sup> in aqueous solution. Dalton Transactions, 2015, 44, 10385-10391.                | 3.3  | 132       |
| 57 | Two porous luminescent metal–organic frameworks: quantifiable evaluation of dynamic and static<br>luminescent sensing mechanisms towards Fe <sup>3+</sup> . Dalton Transactions, 2015, 44, 17222-17228.                                      | 3.3  | 114       |
| 58 | Three new solvent-directed Cd( <scp>ii</scp> )-based MOFs with unique luminescent properties and<br>highly selective sensors for Cu <sup>2+</sup> cations and nitrobenzene. Dalton Transactions, 2015,<br>44, 3271-3277.                     | 3.3  | 203       |
| 59 | A Rare L1D + R1D → 3D Luminescent Dense Polymer as Multifunctional Sensor to Nitro Aromatic<br>Compounds, Cu <sup>2+</sup> , and Bases. Crystal Growth and Design, 2014, 14, 2954-2961.                                                      | 3.0  | 56        |
| 60 | Solvent Influence on Sizes of Channels in Three New Co(II) Complexes, Exhibiting an Active Replaceable<br>Coordinated Site. Crystal Growth and Design, 2013, 13, 66-73.                                                                      | 3.0  | 57        |
| 61 | Two isostructural amine-functionalized 3D self-penetrating microporous MOFs exhibiting high sorption selectivity for CO2. CrystEngComm, 2013, 15, 2057.                                                                                      | 2.6  | 32        |
| 62 | Three new solvent-directed 3D lead(ii)–MOFs displaying the unique properties of luminescence and selective CO2 sorption. Dalton Transactions, 2013, 42, 13590.                                                                               | 3.3  | 57        |
| 63 | Investigation on the prime factors influencing the formation of entangled metal–organic frameworks. CrystEngComm, 2013, 15, 2561.                                                                                                            | 2.6  | 131       |
| 64 | Dynamic Zn-based metal–organic framework: stepwise adsorption, hysteretic desorption and selective carbon dioxide uptake. Journal of Materials Chemistry A, 2013, 1, 6535.                                                                   | 10.3 | 58        |
| 65 | Molecular braids in metal–organic frameworks. Chemical Society Reviews, 2012, 41, 6992.                                                                                                                                                      | 38.1 | 166       |
| 66 | Interaction of 1,3-Adamantanediacetic Acid (H2ADA) and Ditopic Pyridyl Subunits with Cobalt Nitrate<br>under Hydrothermal Conditions: pH Influence, Crystal Structures, and Their Properties. Crystal<br>Growth and Design, 2010, 10, 76-84. | 3.0  | 86        |
| 67 | Highly Enhanced Congo Red Sorption of New Functionalized Porous Eu(III)–Organic Framework by the<br>Insertion of Sulfonate Groups. Crystal Growth and Design, 0, , .                                                                         | 3.0  | 6         |