Lin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505022/publications.pdf

Version: 2024-02-01

94433 88630 5,144 91 37 70 citations h-index g-index papers 91 91 91 5111 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2018, 2, 687-695.	22.5	520
2	Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56, 173-200.	3.7	474
3	Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Advanced Materials, 2021, 33, e2005569.	21.0	311
4	Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Science Advances, 2018, 4, eaar3979.	10.3	204
5	Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Science China Materials, 2018, 61, 303-352.	6.3	184
6	"Click―chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 2018, 273, 160-179.	9.9	172
7	Wood-Inspired Anisotropic Cellulose Nanofibril Composite Sponges for Multifunctional Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35513-35522.	8.0	148
8	Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today, 2021, 38, 101204.	11.9	142
9	DEVELOPMENT OF POLYMER-BASED 0–3 COMPOSITES WITH HIGH DIELECTRIC CONSTANT. Journal of Advanced Dielectrics, 2011, 01, 389-406.	2.4	140
10	Synergistic effects in 3D honeycomb-like hematite nanoflakes/branched polypyrrole nanoleaves heterostructures as high-performance negative electrodes for asymmetric supercapacitors. Nano Energy, 2016, 22, 189-201.	16.0	102
11	Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy, 2016, 26, 550-557.	16.0	98
12	Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Composites Part A: Applied Science and Manufacturing, 2017, 101, 50-58.	7.6	98
13	Preparation process and dielectric properties of Ba0.5Sr0.5TiO3–P(VDF–CTFE) nanocomposites. Composites Part B: Engineering, 2014, 56, 284-289.	12.0	97
14	Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Applied Physics A: Materials Science and Processing, 2012, 107, 597-602.	2.3	94
15	BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Composites Part B: Engineering, 2019, 168, 34-43.	12.0	94
16	Polymer Dielectrics with Simultaneous Ultrahigh Energy Density and Low Loss. Advanced Materials, 2021, 33, e2008198.	21.0	85
17	Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites. Scientific Reports, 2016, 6, 35763.	3.3	81
18	High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 295-304.	5.7	80

#	Article	IF	CITATIONS
19	Magnetostrictive resonators as sensors and actuators. Sensors and Actuators A: Physical, 2013, 200, 2-10.	4.1	71
20	High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy, 2020, 70, 104551.	16.0	70
21	Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Applied Physics Letters, 2013, 103, 232903.	3.3	67
22	Structure evolution and exceptionally ultra-low hysteresis unipolar electric field-induced strain in (1a^'x)NaNbO3-xBaTiO3 lead-free ferroelectrics. Ceramics International, 2018, 44, 5492-5499.	4.8	65
23	Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. Journal of Materials Chemistry A, 2016, 4, 4797-4807.	10.3	58
24	High thermal stability of electric field-induced strain in (1â^'x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics. Journal of the European Ceramic Society, 2019, 39, 277-286.	5.7	56
25	Ultrafast Microwave Welding/Reinforcing Approach at the Interface of Thermoplastic Materials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22469-22477.	8.0	55
26	Decoding of facial strains via conformable piezoelectric interfaces. Nature Biomedical Engineering, 2020, 4, 954-972.	22.5	54
27	All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Composites Science and Technology, 2018, 167, 285-293.	7.8	51
28	Dielectric composites with a high and temperature-independent dielectric constant. Journal of Advanced Ceramics, 2012, 1, 310-316.	17.4	49
29	A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics. Ceramics International, 2018, 44, 21816-21824.	4.8	45
30	Dielectric and energy-storage performance of Ba0.5Sr0.5TiO3-SiO2 ceramic-glass composites. Journal of Alloys and Compounds, 2018, 745, 127-134.	5.5	44
31	A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group. Journal of Materials Chemistry A, 2020, 8, 15122-15129.	10.3	43
32	Revisiting the percolation phenomena in dielectric composites with conducting fillers. Applied Physics Letters, 2014, 105, .	3.3	40
33	Origin of composition-insensitive electrostrictive coefficient and continuous decrease of domain wall density in (1-x)NaNbO3-xBaTiO3 lead-free ferroelectrics. Journal of the European Ceramic Society, 2018, 38, 3127-3135.	5 . 7	40
34	Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. Chemical Engineering Journal, 2022, 430, 132676.	12.7	40
35	Conducting Polymer - Metal Nanocomposites Synthesis and Their Sensory Applications. Current Organic Chemistry, 2013, 17, 2256-2267.	1.6	39
36	Preparation and energy storage performance of transparent dielectric films with two-dimensional platelets. Composites Science and Technology, 2019, 182, 107759.	7.8	39

#	Article	IF	Citations
37	Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1â°'x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. Journal of Materiomics, 2022, 8, 335-346.	5.7	39
38	An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Advances, 2014, 4, 9308.	3.6	38
39	Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. Journal of the European Ceramic Society, 2022, 42, 944-953.	5.7	37
40	High electrostrictive effect in La3+-doped Ba(Zr0.2Ti0.8)O3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2019, 776, 599-605.	5.5	35
41	Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Composites Part B: Engineering, 2021, 224, 109195.	12.0	35
42	Ultrafast Cr(vi) removal from polluted water by microwave synthesized iron oxide submicron wires. Chemical Communications, 2014, 50, 8036.	4.1	34
43	Characterizations of P(VDF-HFP)-BaTiO3 nanocomposite films fabricated by a spin-coating process. Ceramics International, 2019, 45, 17758-17766.	4.8	34
44	Synthesis of BF–PT perovskite powders by high-energy ball milling. Materials Letters, 2007, 61, 1130-1133.	2.6	33
45	Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics. Ceramics International, 2021, 47, 6298-6309.	4.8	33
46	Effects of CuO additive on the dielectric property and energy-storage performance of BaTiO3-SiO2 ceramic-glass composite. Ceramics International, 2018, 44, 16977-16983.	4.8	31
47	Controlled synthesis of transition metal/conducting polymer nanocomposites. Nanotechnology, 2012, 23, 335603.	2.6	29
48	Ultra-low hysteresis electrostrictive strain with high thermal stability in Bi(Li0.5Nb0.5)O3-modified BaTiO3 lead-free ferroelectrics. Journal of Alloys and Compounds, 2018, 753, 558-565.	5. 5	29
49	Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides. Scientific Reports, 2016, 6, 22503.	3.3	28
50	Synthesis, sintering and characterization of PNZST ceramics from high-energy ball milling process. Ceramics International, 2008, 34, 709-713.	4.8	27
51	Physical aspects of 0-3 dielectric composites. Journal of Advanced Dielectrics, 2015, 05, 1550012.	2.4	27
52	Piezoelectric-excited membrane for liquids viscosity and mass density measurement. Sensors and Actuators A: Physical, 2017, 261, 196-201.	4.1	27
53	Enhanced piezoelectric and acoustic performances of poly(vinylidene fluoride-trifluoroethylene) films for hydroacoustic applications. Physical Chemistry Chemical Physics, 2020, 22, 5711-5722.	2.8	27
54	Effects of particle size of dielectric fillers on the output performance of piezoelectric and triboelectric nanogenerators. Journal of Advanced Ceramics, 2021, 10, 991-1000.	17.4	27

#	Article	IF	CITATIONS
55	Preparation and characterization of high T c (1â°x) BiScO3â°xPbTiO3 ceramics from high energy ball milling process. Journal of Electroceramics, 2008, 21, 605-608.	2.0	26
56	Ultra-low hysteresis electric field-induced strain with high electrostrictive coefficient in lead-free Ba(Zr Ti1-)O3 ferroelectrics. Journal of Alloys and Compounds, 2019, 784, 931-938.	5 . 5	26
57	Significantly enhanced energy storage performance of flexible composites using sodium bismuth titanate based lead-free fillers. Journal of Materials Chemistry C, 2020, 8, 14910-14918.	5.5	26
58	Flexible composites with Ce-doped BaTiO3/P(VDF-TrFE) nanofibers for piezoelectric device. Composites Science and Technology, 2020, 200, 108386.	7.8	26
59	Enhanced dielectric, ferroelectric, and optical properties in rare earth elements doped PMN-PT thin films. Journal of Advanced Ceramics, 2021, 10, 98-107.	17.4	26
60	Dielectric property and ac conductivity of P(VDF-CTFE)-PLZST polymer-ceramic composite films. Ceramics International, 2019, 45, 8979-8987.	4.8	25
61	Microstructure and dielectric response of BaSrTiO3/P(VDF-CTFE) nanocomposites. Materials Letters, 2015, 159, 72-75.	2.6	24
62	Microstructure effect on dielectric Properties of MgO-doped BaTiO3–BiYO3 ceramics. Ceramics International, 2015, 41, 7489-7495.	4.8	24
63	High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions. Ceramics International, 2019, 45, 5518-5524.	4.8	24
64	Fabrication of carbon nanotubes grown woven carbon fiber/epoxy composites and their electrical and mechanical properties. Journal of Applied Physics, 2013, 113, .	2.5	22
65	High dielectric tunability in composites prepared using SiO2 coated Ba0.5Sr0.5TiO3 nanoparticles. Ceramics International, 2018, 44, 9875-9879.	4.8	22
66	Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. Journal of Materials Science, 2021, 56, 19983-19995.	3.7	22
67	Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE) composites. Journal of Advanced Dielectrics, 2018, 08, 1850008.	2.4	21
68	Effect of coupling agents on the dielectric properties and energy storage of Ba0.5Sr0.5TiO3/P(VDF-CTFE) nanocomposites. AIP Advances, 2017, 7, 075210.	1.3	20
69	Novel multi-layer-composites design for ultrasonic transducer applications. Composite Structures, 2020, 245, 112364.	5.8	19
70	Magnetostrictive particle based biosensors for in situ and realâ€time detection of pathogens in water. Biotechnology and Bioengineering, 2014, 111, 2229-2238.	3.3	18
71	Microstructure and Dielectric Properties of CCTO-P(VDF-TrFE) Nanocomposites. Ferroelectrics, 2010, 405, 92-97.	0.6	17
72	High frequency needle ultrasonic transducers based on Mn doped piezoelectric single crystal. Journal of Alloys and Compounds, 2020, 832, 154951.	5 . 5	17

#	Article	IF	Citations
73	Enhancement of Biodegradable Poly(Ethylene Oxide) Ionic–Polymer Metallic Composite Actuators with Nanocrystalline Cellulose Fillers. Actuators, 2018, 7, 72.	2.3	16
74	Mass Load Distribution Dependence of Mass Sensitivity of Magnetoelastic Sensors under Different Resonance Modes. Sensors, 2015, 15, 20267-20278.	3.8	14
75	Polymer-Based Nanocomposites with High Dielectric Permittivity. , 2019, , 201-243.		12
76	Characterization of percolation behavior in conductor–dielectric 0-3 composites. Journal of Advanced Dielectrics, 2014, 04, 1450035.	2.4	11
77	Dielectric response and percolation behavior of Ni–P(VDF–TrFE) nanocomposites. Journal of Advanced Dielectrics, 2017, 07, 1750015.	2.4	10
78	Time-dependence of the electromechanical bending actuation observed in ionic-electroactive polymers. Journal of Advanced Dielectrics, 2017, 07, 1720002.	2.4	8
79	Phonon band structures of the three dimensional latticed pentamode metamaterials. AIP Advances, 2017, 7, .	1.3	7
80	Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires. Journal of Materials Science, 2018, 53, 12178-12189.	3.7	7
81	A Case Study of Conductor-Dielectric 0–3 Composites Using Ni-P(VDF-CTFE) Nanocomposites. Journal of Advanced Physics, 2015, 4, 362-369.	0.4	7
82	Improving the Energy Density and Efficiency of the Linear Polymer PMMA with a Double-Bond Fluoropolymer at Elevated Temperatures. ACS Omega, 2021, 6, 35014-35022.	3.5	6
83	Dielectric Behavior of CaCu3Ti4O12–Polyethylene Composites with a Low Dielectric Loss. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 7-16.	1.5	5
84	Synthesis and Photoluminescence Properties of Tb ₃₊ Doped ZrO ₂ Hollow Spheres. Journal of Nanoscience and Nanotechnology, 2017, 17, 3233-3237.	0.9	4
85	Fabrication of three-dimensional micro-nanofiber structures by a novel solution blow spinning device. AIP Advances, 2017, 7, .	1.3	4
86	Influence of Process Condition on the Dielectric Properties of CCTO-P(VDF-TrFE) 0-3 Composites. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	2
87	Effects of Annealing on the Structure and Magnetic Properties of Fe80B20 Magnetostrictive Fibers. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 56-61.	1.6	2
88	Angle-insensitive acoustic metamaterial plane with extraordinary transmission using two embedded and coaxial split spherical shells. Applied Physics Express, 2017, 10, 104001.	2.4	2
89	Formation mechanism of barium titanate single crystalline microplates based on topochemical transformation using bismuth-based precursors. Ceramics International, 2021, 47, 4543-4550.	4.8	2
90	Electromechanical response of NCC-PEO composites. , 2014, , .		O

ARTICLE IF CITATIONS

91 Modeling of the time-dependent strain response of electroactive NCC-PEO and PVDF composites., 2015,
o