
Eleonora Cano Carmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2505012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pectin and Pectinases: Production, Characterization and Industrial Application of Microbial Pectinolytic Enzymes. Open Biotechnology Journal, 2009, 3, 9-18.	1.2	245
2	β-Xylosidases from filamentous fungi: an overview. World Journal of Microbiology and Biotechnology, 2010, 26, 389-407.	3.6	150
3	Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioactive Carbohydrates and Dietary Fibre, 2019, 18, 100184.	2.7	91
4	Purification and characterization of xylanases from Trichoderma inhamatum. Electronic Journal of Biotechnology, 2015, 18, 307-313.	2.2	78
5	Production of xylanolytic enzymes by Penicillium janczewskii. Bioresource Technology, 2010, 101, 4139-4143.	9.6	77
6	Purification and Characterization of Two Extracellular Xylanases from Penicillium sclerotiorum: A Novel Acidophilic Xylanase. Applied Biochemistry and Biotechnology, 2010, 162, 429-443.	2.9	73
7	Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochemistry, 2005, 40, 359-364.	3.7	54
8	Ultrasound effects on invertase from Aspergillus niger. World Journal of Microbiology and Biotechnology, 2004, 20, 137-142.	3.6	50
9	Purification and biochemical characterization of an endoxylanase fromAspergillus versicolor. FEMS Microbiology Letters, 1998, 166, 311-315.	1.8	49
10	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 79-82.	3.6	45
11	Xylanase and β-xylosidase from Penicillium janczewskii : Purification, characterization and hydrolysis of substrates. Electronic Journal of Biotechnology, 2016, 23, 54-62.	2.2	42
12	Purification and characterization of xylanases fromAspergillus giganteus. Folia Microbiologica, 2004, 49, 13-18.	2.3	41
13	Purification and characterization of the exopolygalacturonase produced by Aspergillus giganteus in submerged cultures. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 567-573.	3.0	41
14	The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochemical Pharmacology, 2011, 82, 1853-1859.	4.4	40
15	Purification and properties of an alkaline protease of Aspergillus clavatus. World Journal of Microbiology and Biotechnology, 2007, 23, 295-299.	3.6	39
16	Studies on Productivity and Characterization of Polygalacturonase from Aspergillus giganteus Submerged Culture Using Citrus Pectin and Orange Waste. Applied Biochemistry and Biotechnology, 2008, 144, 191-200.	2.9	39
17	In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatalysis and Agricultural Biotechnology, 2021, 33, 101973.	3.1	35
18	Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: Hydrolysis of triacylglycerol and soy lecithin. Process Biochemistry, 2018, 65, 71-80.	3.7	30

#	Article	IF	CITATIONS
19	Acid Lipase from <i>Candida viswanathii</i> : Production, Biochemical Properties, and Potential Application. BioMed Research International, 2013, 2013, 1-10.	1.9	29
20	Agroindustrial biomass for xylanase production by Penicillium chrysogenum : Purification, biochemical properties and hydrolysis of hemicelluloses. Electronic Journal of Biotechnology, 2018, 33, 39-45.	2.2	28
21	Partial purification and properties of cellulase-free alkaline xylanase produced by Rhizopus stolonifer in solid-state fermentation. Brazilian Archives of Biology and Technology, 2005, 48, 327-333.	0.5	27
22	Purification and some properties of an extracellular acid protease from Aspergillus clavatus. World Journal of Microbiology and Biotechnology, 2011, 27, 2491-2497.	3.6	27
23	Production of extracellular alkaline proteases by Aspergillus clavatus. World Journal of Microbiology and Biotechnology, 2005, 21, 169-172.	3.6	26
24	Xylanase production byAspergillus versicolor. Journal of Basic Microbiology, 1997, 37, 387-393.	3.3	25
25	Xylanolytic complex from Aspergillus giganteus: production and characterization. Journal of Basic Microbiology, 2003, 43, 269-277.	3.3	24
26	Influence of carbon and nitrogen sources on lipase production by a newly isolated Candida viswanathii strain. Annals of Microbiology, 2013, 63, 1225-1234.	2.6	24
27	Production of Extracellular Acid Proteases by Aspergillus Clavatus. World Journal of Microbiology and Biotechnology, 2004, 20, 639-642.	3.6	23
28	Agroindustrial Wastes as Alternative for Lipase Production by <i> Candida viswanathii</i> under Solid-State Cultivation: Purification, Biochemical Properties, and Its Potential for Poultry Fat Hydrolysis. Enzyme Research, 2016, 2016, 1-15.	1.8	23
29	Cell-associated acid β-xylosidase production by Penicillium sclerotiorum. New Biotechnology, 2009, 26, 60-67.	4.4	21
30	Solid-state fermentation of brewer's spent grain for xylanolytic enzymes production by Penicillium janczewskii and analyses of the fermented substrate. Bioscience Journal, 2015, 31, 1826-1836.	0.4	21
31	Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system. Brazilian Journal of Microbiology, 2009, 40, 404-410.	2.0	20
32	Xylanase and β-Xylosidase from Penicillium janczewskii: Production, Physico-chemical Properties, and Application of the Crude Extract to Pulp Biobleaching. BioResources, 2012, 8, .	1.0	20
33	Purification and Characterization of a Unique Pectin Lyase from <i>Aspergillus giganteus</i> Able to Release Unsaturated Monogalacturonate during Pectin Degradation. Enzyme Research, 2014, 2014, 1-7.	1.8	20
34	Production and Characterization of Cellulase-Free Xylanase from Trichoderma inhamatum. Applied Biochemistry and Biotechnology, 2008, 150, 117-125.	2.9	19
35	Co-immobilization and stabilization of xylanase, β-xylosidase and α-l-arabinofuranosidase from Penicillium janczewskii for arabinoxylan hydrolysis. Process Biochemistry, 2016, 51, 614-623.	3.7	17
36	Salt-tolerant α-arabinofuranosidase from a new specie Aspergillus hortai CRM1919: Production in acid conditions, purification, characterization and application on xylan hydrolysis. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101460.	3.1	15

#	Article	IF	CITATIONS
37	Pectin lyase from Aspergillus giganteus: Comparative study of productivity of submerged fermentation on citrus pectin and orange waste. Applied Biochemistry and Microbiology, 2009, 45, 610-616.	0.9	10
38	β-xylosidase from <i>Selenomonas ruminantium</i> : Immobilization, stabilization, and application for xylooligosaccharide hydrolysis. Biocatalysis and Biotransformation, 2016, 34, 161-171.	2.0	10
39	Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system. Brazilian Journal of Microbiology, 2009, 40, 404-10.	2.0	10
40	Cytogenetic and biochemical aspects of the cellulolytic fungus Humicola sp Mycological Research, 1991, 95, 169-177.	2.5	9
41	Purification and properties of an acid β-xylosidase from Penicillium sclerotiorum. Annals of Microbiology, 2012, 62, 501-508.	2.6	8
42	-L-Arabinofuranosidase from Penicillium janczewskii: Production with brewers spent grain and orange waste. African Journal of Biotechnology, 2014, 13, 1796-1806.	0.6	7
43	Immobilization and Stabilization of Beta-Xylosidases from Penicillium janczewskii. Applied Biochemistry and Biotechnology, 2017, 182, 349-366.	2.9	7
44	EVALUATION OF XYLOOLIGOSACCHARIDES EFFECT ON THE GROWTH OF PROBIOTIC MICROORGANISMS / AVALIAÇÃO DO EFEITO DE XILOOLIGOSSACARÃĐEOS NO CRESCIMENTO DE MICRO-ORGANISMOS PROBIÓTICOS. Brazilian Journal of Development, 2020, 6, 73400-73411.	0.1	5
45	Production of β-Galactosidase by Trichoderma reesei FTKO-39 in Wheat Bran: Partial Purification of Two Isozymes. Applied Biochemistry and Biotechnology, 2006, 133, 163-170.	2.9	4
46	Properties of a polynucleotide synthesized by strain 74A of Neurospora crassa. Phytochemistry, 1996, 41, 345-348.	2.9	3
47	Cellulolytic activity of wild type and mutantTrichoderma pseudokoningii. Journal of Basic Microbiology, 1999, 39, 351-356.	3.3	1