
Stéphane Delmas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/250438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Versatile Protocol to Generate Translocations in Yeast Genomes Using CRISPR/Cas9. Methods in Molecular Biology, 2021, 2196, 181-198.	0.9	7
2	Succession of physiological stages hallmarks the transcriptomic response of theÂfungus Aspergillus niger to lignocellulose. Biotechnology for Biofuels, 2020, 13, 69.	6.2	4
3	Reshuffling yeast chromosomes with CRISPR/Cas9. PLoS Genetics, 2019, 15, e1008332.	3.5	62
4	The evolution of the temporal program of genome replication. Nature Communications, 2018, 9, 2199.	12.8	19
5	Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnology for Biofuels, 2017, 10, 35.	6.2	18
6	<i>toplb</i> , a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB. Nucleic Acids Research, 2016, 44, 2795-2805.	14.5	5
7	Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biology and Biotechnology, 2014, 1, 1-14.	5.1	119
8	RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger. Fungal Biology and Biotechnology, 2014, 1, 3.	5.1	41
9	The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genetics and Biology, 2014, 72, 34-47.	2.1	95
10	Development of an Unmarked Gene Deletion System for the Filamentous Fungi Aspergillus niger and Talaromyces versatilis. Applied and Environmental Microbiology, 2014, 80, 3484-3487.	3.1	22
11	Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics, 2013, 14, 541.	2.8	86
12	<scp>DNA</scp> damage induces nucleoid compaction via the <scp>Mre11â€Rad50</scp> complex in the archaeon <i><scp>H</scp>aloferax volcanii</i> . Molecular Microbiology, 2013, 87, 168-179.	2.5	37
13	Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing. PLoS Genetics, 2012, 8, e1002875.	3.5	157
14	The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon. PLoS ONE, 2010, 5, e9605.	2.5	234
15	Mre11-Rad50 Promotes Rapid Repair of DNA Damage in the Polyploid Archaeon Haloferax volcanii by Restraining Homologous Recombination. PLoS Genetics, 2009, 5, e1000552.	3.5	77
16	Interplay between replication and recombination in Escherichia coli: Impact of the alternative DNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4564-4569.	7.1	34
17	UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO Journal, 2005, 24, 180-189.	7.8	243
18	Cellular response to horizontally transferred DNA in Escherichia coli is tuned by DNA repair systems. DNA Repair, 2005, 4, 221-229.	2.8	18