

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2503588/publications.pdf Version: 2024-02-01

Å®¶C÷Š Å~

#	Article	IF	CITATIONS
1	Research Progress of Light Wavelength Conversion Materials and Their Applications in Functional Agricultural Films. Polymers, 2022, 14, 851.	4.5	15
2	Synthesis of Novel Ultraviolet Absorbers and Preparation and Field Application of Anti-Ultraviolet Aging PBAT/UVA Films. Polymers, 2022, 14, 1434.	4.5	7
3	Corrigendum to "Aroma components of tobacco powder from different producing areas based on gas chromatography ion mobility spectrometry― Open Chemistry, 2022, 20, 350-350.	1.9	0
4	Aroma components of tobacco powder from different producing areas based on gas chromatography ion mobility spectrometry. Open Chemistry, 2021, 19, 442-450.	1.9	6
5	Preparation of Chitin Microcapsules and Their Applications in Stability Improvement of Tobacco Aroma Components. Journal of Physics: Conference Series, 2021, 1838, 012050.	0.4	1
6	Preparation of Organic Crystal Seed and Its Application in Improving the Functional Period of Biodegradable Agricultural Film. Crystals, 2021, 11, 826.	2.2	8
7	Photophysical Spectral Features of fluorescent complexes on the basis of the novel ligand \hat{l}^2 -thujaplicin. Journal of Luminescence, 2020, 218, 116852.	3.1	9
8	Ultrastable Nearâ€Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Advanced Healthcare Materials, 2020, 9, e2001042.	7.6	12
9	Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes and Pigments, 2020, 181, 108509.	3.7	98
10	Construction of a simple crosslinking system and its influence on the poling efficiency and oriental stability of organic electro-optic materials. RSC Advances, 2020, 10, 6482-6490.	3.6	11
11	Synthesis and comparative studies of coumarin-based nonlinear optical chromophores with different conjugated electron bridge. Journal of Materials Science: Materials in Electronics, 2020, 31, 9224-9230.	2.2	6
12	Synthesis of Molecularly Imprinted Polymer via Emulsion Polymerization for Application in Solanesol Separation. Applied Sciences (Switzerland), 2020, 10, 2868.	2.5	31
13	Research Progress on Solanesol Extraction from Tobacco Wastes. Mini-Reviews in Organic Chemistry, 2020, 17, 113-121.	1.3	1
14	Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches. Journal of Biomolecular Structure and Dynamics, 2019, 37, 2627-2640.	3.5	9
15	A novel chromophore containing a Michler's donor and a tricyanofuran acceptor with enhanced nonlinear optical properties. Materials Letters, 2019, 255, 126555.	2.6	4
16	Polygonal WS2-decorated-graphene multilayer films with microcavities prepared from a cheap precursor as anode materials for lithium-ion batteries. Materials Letters, 2019, 254, 73-76.	2.6	10
17	Synthesis and properties study of a novel nonlinear optical chromophore containing benzo[b]furan moiety based on julolidine. Journal of Molecular Structure, 2019, 1196, 439-443.	3.6	6
18	Optimizing the molecular structure of 1,1,7,7-tetramethyl julolidine fused furan based chromophores by introducing a heterocycle ring to achieve high electro-optic activity. New Journal of Chemistry, 2019, 43, 15548-15554.	2.8	10

#	Article	IF	CITATIONS
19	Novel nonlinear optical push–pull fluorene dyes chromophore as promising materials for telecommunications. Journal of Materials Science: Materials in Electronics, 2019, 30, 12180-12185.	2.2	24
20	Characterization of linear and nonlinear optical properties of phosophorylated CREB protein for application in biosensing. Materials Chemistry and Physics, 2019, 233, 141-144.	4.0	2
21	Using phenothiazine as electron donor for new second-order nonlinear optical chromophore. Materials Letters, 2019, 245, 196-199.	2.6	4
22	Recent Advances in The Synthesis and Application of Conjugated Small Molecules with D-ï€-A Structure. Mini-Reviews in Organic Chemistry, 2019, 16, 206-207.	1.3	1
23	Novel nonlinear optical chromophores based on coumarin: Synthesis and properties studies. Optical Materials, 2019, 88, 218-222.	3.6	24
24	Surface modification of nano Pd and its application in selective dechlorination reaction. Materials Letters, 2019, 238, 31-34.	2.6	0
25	The Effect of Donor Molecular Structure on Power Conversion Efficiency of Small-Molecule-Based Organic Solar Cells. Mini-Reviews in Organic Chemistry, 2019, 16, 236-243.	1.3	2
26	The Progress in the Field Auxiliary Donors and their Application in Novel Organic Second-Order Nonlinear Optical Chromophores. Mini-Reviews in Organic Chemistry, 2019, 16, 228-235.	1.3	9
27	Synthesis and nonlinear optical properties of novel conjugated small molecules based on indole donor. Journal of Molecular Structure, 2018, 1165, 223-227.	3.6	19
28	Greatly improved performance for NLO chromophore with 4,4′-bis(diethylamino)benzophenone as donor by introducing stronger acceptor. Materials Letters, 2018, 226, 38-42.	2.6	4
29	Synthesis and properties study of a X-type dendrimer based on triphenylamine. Materials Letters, 2017, 193, 112-114.	2.6	5
30	Enhanced electro-optic activity of two novel bichromophores which are synthesized by Cu(I) catalyzed click-reaction. Dyes and Pigments, 2017, 139, 756-763.	3.7	9
31	Design and preparation of novel Diels–Alder crosslinking polymer and its application in NLO materials. Journal of Materials Science: Materials in Electronics, 2017, 28, 8480-8486.	2.2	8
32	Site-isolation of nonlinear optical chromophores to suppress the dipole-dipole interactions for improved electro-optic performance. Materials Letters, 2017, 199, 72-74.	2.6	5
33	Facile preparation of crosslinkable organic EO polymers based on AZO nonlinear optical chromophore: great indemnification for long term of stability. Journal of Materials Science: Materials in Electronics, 2017, 28, 4931-4940.	2.2	6
34	Synthesis and luminescent properties of GdNbO4:Bi3+ phosphors via high temperature high pressure. Journal of Alloys and Compounds, 2017, 723, 1-8.	5.5	23
35	Modification of indole by electron-rich atoms and their application in novel electron donor materials. Chemical Physics Letters, 2017, 681, 105-109.	2.6	15
36	Structural control of side-chain chromophores to achieve highly efficient electro-optic activity. Physical Chemistry Chemical Physics, 2017, 19, 11502-11509.	2.8	10

#	Article	IF	CITATIONS
37	Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing different steric hindrance groups. Materials Letters, 2017, 196, 230-233.	2.6	4
38	Preparation of Main-Chain Polymers Based on Novel Monomers with Dâ~ï€â€"A Structure for Application in Organic Second-Order Nonlinear Optical Materials with Good Long-Term Stability. ACS Applied Materials & Interfaces, 2017, 9, 10366-10370.	8.0	46
39	The important role of the isolation group (TBDPS) in designing efficient organic nonlinear optical FTC type chromophores. Dyes and Pigments, 2017, 139, 239-246.	3.7	32
40	Facile microwave-assisted synthesis of Zn 2 GeO 4 :Mn 2+ , Yb 3+ uniform nanorods and near-infrared down-conversion properties. Optical Materials, 2017, 64, 152-159.	3.6	13
41	Novel poly(aryl ether ketone) with electro-optic chromophore side chains for light modulators. Journal of Materials Science: Materials in Electronics, 2017, 28, 18568-18577.	2.2	11
42	Performances Enhancement in Perovskite Solar Cells by Incorporating Plasmonic Au NRs@SiO ₂ at Absorber/HTL Interface. Solar Rrl, 2017, 1, 1700151.	5.8	21
43	Study of novel nonlinear optical material based on Poly(aryl ether ketone) and its application in SHG imaging. Optical Materials, 2017, 72, 392-396.	3.6	8
44	Synthesis of chromophores with ultrahigh electro-optic activity: Rational combination of the bridge, donor and acceptor groups. Dyes and Pigments, 2017, 136, 182-190.	3.7	18
45	The influence of different donor/acceptor matches on chromophore's nonlinear optical activity. Dyes and Pigments, 2016, 131, 215-223.	3.7	9
46	Asymmetric dendrimers with improved electro-optic performance: synthesis and characterization. RSC Advances, 2016, 6, 44080-44086.	3.6	3
47	Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Advances, 2016, 6, 99743-99751.	3.6	11
48	Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dyes and Pigments, 2016, 134, 358-367.	3.7	23
49	Design and preparation of novel polyarylene ether materials based on Diels–Alder reaction as the crosslinker for electrooptical modulators. Optical Materials, 2016, 57, 63-70.	3.6	7
50	Synthesis and characterization of one novel second-order nonlinear optical chromophore based on new benzoxazin donor. Materials Letters, 2016, 164, 644-646.	2.6	9
51	Introduction of fluorine to change the dielectric environment of nonlinear optical chromophores for improved electro-optic activities. Materials Letters, 2016, 164, 636-639.	2.6	12
52	The design of nonlinear optical chromophores exhibiting large electro-optic activity and high thermal stability: The role of donor groups. Dyes and Pigments, 2016, 130, 138-147.	3.7	28
53	Effects of chiral additives on the electro-optical properties of polymer dispersed liquid crystal. Materials Letters, 2016, 163, 142-145.	2.6	14
54	Benefits of the use of auxiliary donors in the design and preparation of NLO chromophores. Materials Letters, 2015, 143, 333-335.	2.6	23

#	Article	IF	CITATIONS
55	Recent advances in polymer electro-optic modulators. RSC Advances, 2015, 5, 15784-15794.	3.6	160
56	Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: enhanced electro-optical activity and thermal stability. Journal of Materials Chemistry C, 2015, 3, 9283-9291.	5.5	39
57	Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges. Dyes and Pigments, 2015, 122, 139-146.	3.7	22
58	Copper-catalyzed Huisgen cycloaddition reactions used to incorporate NLO chromophores into high Tg Side-Chain Polymers for Electro-Optics. Optical Materials, 2015, 47, 256-262.	3.6	17
59	Optimization of polycyclic electron-donors based on julolidinyl structure in push–pull chromophores for second order NLO effects. Dyes and Pigments, 2015, 122, 74-84.	3.7	95
60	Comparative studies on structure–nonlinearity relationships in a series of novel second-order nonlinear optical chromophores with different aromatic amine donors. Dyes and Pigments, 2015, 120, 347-356.	3.7	29
61	Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. Journal of Materials Chemistry C, 2015, 3, 5297-5306.	5.5	25
62	The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. Journal of Materials Chemistry C, 2015, 3, 3913-3921.	5.5	24
63	Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. Journal of Materials Chemistry C, 2015, 3, 11423-11431.	5.5	14
64	Synthesis of novel nonlinear optical chromophores: achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. Journal of Materials Chemistry C, 2015, 3, 11595-11604.	5.5	47
65	Great improvement of performance for NLO chromophore with cyclopentadithiophenone unit as Ï€-electron bridge. Materials Letters, 2015, 161, 674-677.	2.6	9
66	Physical attachment of NLO chromophores to polymers for great improvement of long-term stability. Materials Letters, 2015, 142, 87-89.	2.6	15
67	Using phenoxazine and phenothiazine as electron donors for second-order nonlinear optical chromophore: Enhanced electro-optic activity. Dyes and Pigments, 2015, 114, 196-203.	3.7	50
68	Novel NLO-phores containing dihexyl amino benzo[b]thiophene exhibiting good transparency and enhanced electro-optical activity. RSC Advances, 2014, 4, 15870-15876.	3.6	11
69	Design of Mach-Zehnder interference modulators composed of enhanced electro-optic active polymers. , 2014, , .		0
70	Novel second-order nonlinear optical chromophores containing multi-heteroatoms in donor moiety: Design, synthesis, DFT studies and electro-optic activities. Dyes and Pigments, 2014, 102, 142-149.	3.7	51
71	Comparison of second-order nonlinear optical chromophores with D–Ĩ€â€"A, D–A–Ĩ€â€"A and D–D–Ĩ€â architectures: diverse NLO effects and interesting optical behavior. RSC Advances, 2014, 4, 52991-52999.	–A 3.6	38
72	Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity, Journal of Materials Chemistry C, 2014, 2, 5124-5132	5.5	62

Å®¶Ç£Š Å^~

#	Article	IF	CITATIONS
73	Novel electro-optic chromophores based on substituted benzo[1,2-b:4,5-b′]dithiophene π-conjugated bridges. RSC Advances, 2014, 4, 25532-25539.	3.6	17
74	Synthesis and characterization of a novel second-order nonlinear optical chromophore based on a new julolidine donor. Physical Chemistry Chemical Physics, 2014, 16, 20209-20215.	2.8	31
75	A nunchaku-like nonlinear optical chromophore for improved temporal stability of guest–host electro-optic materials. Dyes and Pigments, 2013, 99, 753-758.	3.7	25
76	Synthesis and characterization of novel electro-optic chromophores based on 4-hydroxycarbazole. Materials Letters, 2013, 97, 117-120.	2.6	14
77	Synthesis and electro-optic activities of novel polycarbonates bearing tricyanopyrroline-based nonlinear optical chromophores with excellent thermal stability of dipole alignment. Polymer, 2013, 54, 6349-6356.	3.8	20
78	Hydrogen-bonded network: An effective approach to improve the thermal stability of organic/polymer electro-optic materials. Science China Chemistry, 2013, 56, 169-173.	8.2	13
79	Enhanced electrooptical active materials based on n-hexyl group flexible isolation in NLO chromophores. Journal of Materials Science: Materials in Electronics, 2013, 24, 2701-2705.	2.2	6
80	Facile synthesis and electroâ€optic activities of new polycarbonates containing tricyanofuranâ€based nonlinear optical chromophores. Journal of Polymer Science Part A, 2013, 51, 2841-2849.	2.3	30
81	Synthesis and optical properties of new fluorinated second-order nonlinear optical copolymers: an attempt toward the balance between solubility and long-term alignment stability. Polymer Chemistry, 2013, 4, 2703.	3.9	40
82	Synthesis and nonlinear optical properties of novel yâ€ŧype polyurethanes containing different concentrations of chromophore. Journal of Applied Polymer Science, 2013, 128, 2694-2700.	2.6	7
83	Simple preparation of copolymer of styrene and 4-chloromethyl styrene and its application in NLO materials. Electronic Materials Letters, 2012, 8, 451-455.	2.2	3
84	Synthesis and nonlinear optical properties of a cross-linkable system using sol-gel approach. Journal of Non-Crystalline Solids, 2012, 358, 1003-1008.	3.1	1
85	Synthesis and electro-optical features of a high T g polymer system with excellent electro-optic activity and thermal stability. Colloid and Polymer Science, 2012, 290, 1819-1823.	2.1	6
86	Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chemical Communications, 2012, 48, 9637.	4.1	95
87	Synthesis of nonlinear optical chromophore and the preparation of attenuated total reflectance modulator. Polymers for Advanced Technologies, 2012, 23, 866-869.	3.2	9
88	Enhanced electro-optic coefficient (r ₃₃) in nonlinear optical chromospheres with novel donor structure. RSC Advances, 2012, 2, 1416-1423.	3.6	67
89	Novel promising crosslinkable tricyanopyrroline polymeric electro-optic materials. Journal of Materials Science: Materials in Electronics, 2012, 23, 1182-1187.	2.2	10
90	Synthesis of novel polyarylate with elecrooptical chromophores as side chain as electro-optic host polymer. Colloid and Polymer Science, 2012, 290, 1215-1220.	2.1	20

#	Article	IF	CITATIONS
91	Synthesis of tricyanofuran chromophore with flexible rigid isolated group and its application as nonlinear optical materials. Materials Letters, 2012, 75, 233-235.	2.6	31
92	Synthesis of novel nonlinear optical chromophore containing bis(trifluoromethyl)benzene as an isolated group. Materials Letters, 2012, 80, 84-86.	2.6	9
93	Synthesis and characterization of NLO chromophore with benzo [1,2-b:4,5-b′]dithiophene unit as Ï€-electron bridge. Tetrahedron Letters, 2012, 53, 3393-3396.	1.4	25
94	Preparation and characterization of the soluble NLO polyarylates with enhanced electro-optic properties. Polymer Science - Series B, 2012, 54, 297-305.	0.8	3
95	Synthesis and nonlinear optical properties of branched pyrroline chromophores. Journal of Physical Organic Chemistry, 2011, 24, 439-444.	1.9	45
96	Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 253-260.	1.6	26