Fernando R Pavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2503576/publications.pdf

Version: 2024-02-01

170 papers 3,727 citations

33 h-index 197818 49 g-index

173 all docs

173
docs citations

173 times ranked

4958 citing authors

#	Article	IF	CITATIONS
1	Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti $\hat{a} \in \text{``}$ Mycobacterium tuberculosis activity and cytotoxicity. European Journal of Medicinal Chemistry, 2010, 45, 1898-1905.	5.5	272
2	Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. Journal of Inorganic Biochemistry, 2014, 141, 83-93.	3.5	125
3	Antimycobacterial activity of lichen substances. Phytomedicine, 2010, 17, 328-332.	5.3	113
4	Vanadium complexes with thiosemicarbazones: Synthesis, characterization, crystal structures and anti-Mycobacterium tuberculosis activity. Polyhedron, 2009, 28, 398-406.	2.2	88
5	Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorganic and Medicinal Chemistry, 2009, 17, 3795-3799.	3.0	83
6	Ruthenium(II) phosphine/diimine/picolinate complexes: Inorganic compounds as agents against tuberculosis. European Journal of Medicinal Chemistry, 2011, 46, 5099-5107.	5.5	68
7	Antitumor and antimycobacterial activities of cyclopalladated complexes: X-ray structure of [Pd(C2,N-dmba)(Br)(tu)] (dmba =N,N-dimethylbenzylamine, tu = thiourea). European Journal of Medicinal Chemistry, 2009, 44, 4611-4615.	5.5	64
8	Synthesis and biological activity of furoxan derivatives against Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2016, 123, 523-531.	5.5	64
9	Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species. International Journal of Molecular Sciences, 2016, 17, 1252.	4.1	56
10	Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 352-360.	3.8	52
11	Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against & lt;em>Mycobacterium tuberculosis. Drug Design, Development and Therapy, 2017, Volume11, 909-921.	4.3	52
12	Antimycobacterial and antitumor activities of Palladium(II) complexes containing isonicotinamide (isn): X-ray structure of trans-[Pd(N3)2(isn)2]. European Journal of Medicinal Chemistry, 2010, 45, 4863-4868.	5.5	51
13	Synthesis, characterization, X-ray structure and in vitro antimycobacterial and antitumoral activities of Ru(II) phosphine/diimine complexes containing the "SpymMe2―ligand, SpymMe2=4,6-dimethyl-2-mercaptopyrimidine. Journal of Inorganic Biochemistry, 2008, 102, 1783-1789.	3.5	50
14	Manganese(II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents. Journal of Inorganic Biochemistry, 2014, 132, 21-29.	3.5	50
15	Synthesis of 4-aminoquinoline analogues and their platinum(II) complexes as new antileishmanial and antitubercular agents. Biomedicine and Pharmacotherapy, 2011, 65, 204-209.	5.6	49
16	Nanostructured lipid system as a strategy to improve the anti-Candida albicans activity of Astronium sp International Journal of Nanomedicine, 2015, 10, 5081.	6.7	49
17	Palladium(II) complexes with thiosemicarbazones: syntheses, characterization and cytotoxicity against breast cancer cells and Anti-Mycobacterium tuberculosis activity. Journal of the Brazilian Chemical Society, 2010, 21, 1177-1186.	0.6	48
18	Evaluation of anti-Mycobacterium tuberculosis activity of Campomanesia adamantium (Myrtaceae). Quimica Nova, 2009, 32, 1222-1226.	0.3	47

#	Article	IF	CITATIONS
19	Ruthenium (II) phosphine/picolinate complexes as antimycobacterial agents. European Journal of Medicinal Chemistry, 2010, 45, 598-601.	5.5	46
20	6-Mercaptopurine complexes with silver and gold ions: Anti-tuberculosis and anti-cancer activities. Biomedicine and Pharmacotherapy, 2011, 65, 334-338.	5.6	44
21	Study of a series of cobalt(II) sulfonamide complexes: Synthesis, spectroscopic characterization, and microbiological evaluation against M. tuberculosis. Crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H2O. Journal of Molecular Structure, 2013, 1036, 180-187.	3 . 6	44
22	Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. Journal of Medicinal Chemistry, 2017, 60, 8647-8660.	6.4	43
23	Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosisâ€"A Review. Journal of Biomedical Nanotechnology, 2016, 12, 241-260.	1.1	42
24	A broad study of two new promising antimycobacterial drugs: Ag(I) and Au(I) complexes with 2-(2-thienyl)benzothiazole. Polyhedron, 2012, 38, 291-296.	2.2	41
25	Evaluation of cytotoxic, apoptotic, mutagenic, and chemopreventive activities of semi-synthetic esters of gallic acid. Food and Chemical Toxicology, 2017, 105, 300-307.	3.6	40
26	Novel copper(II) complexes with hydrazides and heterocyclic bases: Synthesis, structure and biological studies. Journal of Inorganic Biochemistry, 2017, 172, 138-146.	3 . 5	40
27	Design of novel iron compounds as potential therapeutic agents against tuberculosis. Journal of Inorganic Biochemistry, 2010, 104, 1164-1170.	3.5	39
28	New ruthenium(II)/phosphines/diimines complexes: Promising antitumor (human breast cancer) and Mycobacterium tuberculosis fighting agents. Polyhedron, 2013, 51, 292-297.	2.2	38
29	Aromatic amine N-oxide organometallic compounds: searching for prospective agents against infectious diseases. Dalton Transactions, 2015, 44, 14453-14464.	3.3	38
30	Ru(II)/clotrimazole/diphenylphosphine/bipyridine complexes: Interaction with DNA, BSA and biological potential against tumor cell lines and Mycobacterium tuberculosis. Journal of Inorganic Biochemistry, 2016, 162, 135-145.	3. 5	38
31	Searching for gallium bioactive compounds: Gallium(III) complexes of tridentate salicylaldehyde semicarbazone derivatives. Polyhedron, 2011, 30, 1360-1366.	2.2	36
32	Anti- Mycobacterium tuberculosis activity of platinum(II)/ N , N -disubstituted- N ′-acyl thiourea complexes. Inorganic Chemistry Communication, 2016, 63, 74-80.	3.9	36
33	Coordinative versatility of a Schiff base containing thiophene: Synthesis, characterization and biological activity of zinc(II) and silver(I) complexes. Polyhedron, 2014, 79, 170-177.	2.2	35
34	May iron(III) complexes containing phenanthroline derivatives as ligands be prospective anticancer agents?. European Journal of Medicinal Chemistry, 2019, 176, 492-512.	5.5	35
35	Synthesis and biological evaluation of ternary silver compounds bearing N,N-chelating ligands and thiourea: X-ray structure of [{Ag(bpy)(μ-tu)}2](NO3)2 (bpy=2,2′-bipyridine; tu=thiourea). Polyhedron, 2014, 79, 197-206.	2,2	34
36	Novel lawsone-containing ruthenium(II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorganic Chemistry, 2019, 85, 455-468.	4.1	34

#	Article	IF	CITATIONS
37	Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics, 2022, 14, 642.	4.5	33
38	Synthesis, crystal structures, antimicrobial, antifungal and antituberculosis activities of mixed ligand silver(l) complexes. Polyhedron, 2013, 62, 138-147.	2.2	32
39	Antimicrobial and antitumor activity of S-methyl dithiocarbazate Schiff base zinc(II) complexes. Journal of Inorganic Biochemistry, 2021, 216, 111331.	3.5	30
40	In Vitro and In Vivo Activities of Ruthenium(II) Phosphine/Diimine/Picolinate Complexes (SCAR) against Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e64242.	2.5	30
41	Sulfonamide-containing copper(II) metallonucleases: Correlations with in vitro antimycobacterial and antiproliferative activities. Journal of Inorganic Biochemistry, 2018, 187, 85-96.	3 . 5	29
42	Intravaginal Delivery of Syngonanthus nitens (Bong.) Ruhland Fraction Based on a Nanoemulsion System Applied to Vulvovaginal Candidiasis Treatment. Journal of Biomedical Nanotechnology, 2019, 15, 1072-1089.	1.1	29
43	Triterpenes and antitubercular activity of Byrsonima crassa. Quimica Nova, 2008, 31, 1719-1721.	0.3	28
44	Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics, 2021, 13, 773.	4.5	28
45	In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2016, 17, 745.	4.1	27
46	Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech, 2019, 20, 225.	3.3	27
47	Recent advances in drug discovery against Mycobacterium tuberculosis: Metal-based complexes. European Journal of Medicinal Chemistry, 2021, 214, 113166.	5. 5	27
48	Complexes of platinum and palladium with \hat{l}^2 -diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies. Journal of Molecular Structure, 2014, 1075, 370-376.	3.6	26
49	Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents. European Journal of Medicinal Chemistry, 2014, 87, 267-273.	5 . 5	26
50	Human topoisomerase inhibition and DNA/BSA binding of Ru(II) \hat{a} e"SCAR complexes as potential anticancer candidates for oral application. BioMetals, 2017, 30, 321-334.	4.1	26
51	Binuclear cyclopalladated compounds with antitubercular activity: synthesis and characterization of [{Pd(C ² ,N-dmba)(X)} ₂ (<i>μ</i> -bpp)] (X = Cl, Br, NCO, N ₃ ;) ™	Γj Ε ½Q q1 1	0. 28 4314 g
52	Phenolic compounds and antioxidant, antimicrobial and antimycobacterial activities of Serjania erecta Radlk. (Sapindaceae). Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 775-782.	1.2	25
53	Palladium(II)/ N , N -disubstituted- N ′-acylthioureas complexes as anti- Mycobacterium tuberculosis and anti- Trypanosoma cruzi agents. Polyhedron, 2017, 132, 70-77.	2.2	25
54	Synthesis and SAR evaluation of novel thioridazine derivatives active against drug-resistant tuberculosis. European Journal of Medicinal Chemistry, 2017, 127, 147-158.	5 . 5	25

#	Article	IF	Citations
55	Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Organic and Medicinal Chemistry Letters, 2012, 2, 16.	2.0	23
56	Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. Journal of Microbiology, Immunology and Infection, 2016, 49, 980-983.	3.1	23
57	Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	23
58	Drug resistance in Mycobacterium tuberculosis clinical isolates from Brazil: Phenotypic and genotypic methods. Biomedicine and Pharmacotherapy, 2011, 65, 456-459.	5.6	22
59	Silver(I) complexes with symmetrical Schiff bases: Synthesis, structural characterization, DFT studies and antimycobacterial assays. Polyhedron, 2013, 62, 104-109.	2.2	22
60	Evaluation of the anti-mycobacterium tuberculosis activity and in vivo acute toxicity of Annona sylvatic. BMC Complementary and Alternative Medicine, 2014, 14, 209.	3.7	22
61	Antitubercular activity of Ru (II) isoniazid complexes. European Journal of Pharmaceutical Sciences, 2015, 70, 45-54.	4.0	22
62	Ruthenium(II) complexes with hydroxypyridinecarboxylates: Screening potential metallodrugs against Mycobacterium tuberculosis. Polyhedron, 2015, 85, 376-382.	2.2	22
63	Synthesis, cytotoxic and antitubercular activities of copper(II) complexes with heterocyclic bases and 3-hydroxypicolinic acid. Inorganica Chimica Acta, 2016, 446, 87-92.	2.4	22
64	Unprecedented in Vitro Antitubercular Activitiy of Manganese(II) Complexes Containing 1,10-Phenanthroline and Dicarboxylate Ligands: Increased Activity, Superior Selectivity, and Lower Toxicity in Comparison to Their Copper(II) Analogs. Frontiers in Microbiology, 2018, 9, 1432.	3.5	22
65	Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets. Current Medicinal Chemistry, 2015, 22, 3133-3161.	2.4	22
66	Platinum(II) complexes with carbazates and hydrazides: Synthesis, spectral characterization, computational modeling, and biological studies. Polyhedron, 2015, 98, 146-153.	2.2	21
67	Novel Zinc(II) Complexes [Zn(atc-Et)2] and [Zn(atc-Ph)2]: In Vitro and in Vivo Antiproliferative Studies. International Journal of Molecular Sciences, 2016, 17, 781.	4.1	21
68	In vitro anti-Mycobacterium tuberculosis activity of some Brazilian "Cerrado" plants. Revista Brasileira De Farmacognosia, 2009, 19, 204-206.	1.4	20
69	Nanostructured Lipid Systems as a Strategy to Improve the in Vitro Cytotoxicity of Ruthenium(II) Compounds. Molecules, 2014, 19, 5999-6008.	3.8	20
70	Antifungal Activity of a Hydroethanolic Extract From Astronium urundeuva Leaves Against Candida albicans and Candida glabrata. Frontiers in Microbiology, 2019, 10, 2642.	3.5	20
71	Cytotoxic and apoptotic effects of ternary silver(<scp>i</scp>) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline. Dalton Transactions, 2020, 49, 5264-5275.	3.3	20
72	New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium tuberculosis. Journal of Inorganic Biochemistry, 2018, 187, 73-84.	3.5	19

#	Article	IF	CITATIONS
73	A Novel Antifungal System With Potential for Prolonged Delivery of Histatin 5 to Limit Growth of Candida albicans. Frontiers in Microbiology, 2019, 10, 1667.	3.5	18
74	Antimycobacterial Activity of Natural and Semi-Synthetic Lignans. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 779-784.	1.4	17
75	Activity of rifampicin and linezolid combination in Mycobacterium tuberculosis. Tuberculosis, 2017, 104, 24-29.	1.9	17
76	Antibacterial and Antitubercular Activities of Cinnamylideneacetophenones. Molecules, 2017, 22, 1685.	3.8	17
77	New ternary iron(iii) aminobisphenolate hydroxyquinoline complexes as potential therapeutic agents. Dalton Transactions, 2019, 48, 8702-8716.	3.3	17
78	New Silver(I) Coordination Compound Loaded into Polymeric Nanoparticles as a Strategy to Improve <i>In Vitro</i> Anti- <i>Helicobacter pylori</i> Activity. Molecular Pharmaceutics, 2020, 17, 2287-2298.	4.6	17
79	Synthesis, Cytotoxicity, Antibacterial and Antileishmanial Activities of Imidazolidine and Hexahydropyrimidine Derivatives. Medicinal Chemistry, 2013, 9, 351-359.	1.5	17
80	Zn-based porous coordination solid as diclofenac sodium carrier. Journal of Solid State Chemistry, 2018, 260, 67-72.	2.9	16
81	Three new platinum complexes containing fluoroquinolones and DMSO: Cytotoxicity and evaluation against drug-resistant tuberculosis. Journal of Inorganic Biochemistry, 2018, 183, 77-83.	3 . 5	15
82	Antibacterial activities and antiproliferative assays over a tumor cells panel of a silver complex with 4-aminobenzoic acid: Studies in vitro of sustained release using bacterial cellulose membranes as support. Journal of Inorganic Biochemistry, 2020, 212, 111247.	3.5	15
83	Resazurin Microtiter Assay for Clarithromycin Susceptibility Testing of Clinical Isolates of <i>Mycobacterium abscessus</i> <io>li> Group. Journal of Clinical Laboratory Analysis, 2016, 30, 751-755.</io>	2.1	14
84	Genotyping and rifampicin and isoniazid resistance in Mycobacterium bovis strains isolated from the lymph nodes of slaughtered cattle. Tuberculosis, 2017, 104, 30-37.	1.9	14
85	Intramacrophage Mycobacterium tuberculosis efflux pump gene regulation after rifampicin and verapamil exposure. Journal of Antimicrobial Chemotherapy, 2018, 73, 1770-1776.	3.0	14
86	Antibacterial activity of 3,3′-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorganic Chemistry, 2019, 90, 103031.	4.1	14
87	Determination of in vitro absorption in Caco-2 monolayers of anticancer Ru(II)-based complexes acting as dual human topoisomerase and PARP inhibitors. BioMetals, 2019, 32, 89-100.	4.1	14
88	Acetylcholinesterase inhibition and antifungal activity of cyclohexanoids from the endophytic fungus Saccharicola sp Phytochemistry Letters, 2020, 39, 116-123.	1.2	14
89	A Novel Ruthenium(II) Complex With Lapachol Induces G2/M Phase Arrest Through Aurora-B Kinase Down-Regulation and ROS-Mediated ApoptosisÂin Human Prostate Adenocarcinoma Cells. Frontiers in Oncology, 2021, 11, 682968.	2.8	14
90	Improved in vitro and in vivo Anti-Candida albicans Activity of Cymbopogon nardus Essential Oil by Its Incorporation into a Microemulsion System. International Journal of Nanomedicine, 2020, Volume 15, 10481-10497.	6.7	14

#	Article	IF	CITATIONS
91	Synthesis and evaluation of a pyrazinoic acid prodrug in Mycobacterium tuberculosis. Saudi Pharmaceutical Journal, 2014, 22, 376-380.	2.7	13
92	A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes. Molecules, 2015, 20, 22534-22545.	3.8	13
93	Bis(diphenylphosphino)amines-containing ruthenium cymene complexes as potential anti- Mycobacterium tuberculosis agents. Journal of Inorganic Biochemistry, 2017, 173, 134-140.	3.5	13
94	Structure and antimycobacterial activity of the novel organometallic [Pd(C-bzan)(SCN)(dppp)] compound. Inorganic Chemistry Communication, 2012, 23, 63-66.	3.9	12
95	New antimycobacterial agents in the pre-clinical phase or beyond: recent advances in patent literature (2001–2016). Expert Opinion on Therapeutic Patents, 2017, 27, 269-282.	5.0	12
96	Genetic correlates of clarithromycin susceptibility among isolates of the Mycobacterium abscessus group and the potential clinical applicability of a PCR-based analysis of erm(41). Journal of Antimicrobial Chemotherapy, 2018, 73, 862-866.	3.0	12
97	Silver(I) and zinc(II) complexes with symmetrical cinnamaldehyde Schiff base derivative: Spectroscopic, powder diffraction characterization, and antimycobacterial studies. Polyhedron, 2018, 146, 166-171.	2.2	12
98	Esterification of the free carboxylic group from the lutidinic acid ligand as a tool to improve the cytotoxicity of Ru(ii) complexes. Inorganic Chemistry Frontiers, 2019, 6, 376-390.	6.0	12
99	Exploiting the furo [2,3-b] pyridine core against multidrug-resistant Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 974-977.	2.2	12
100	Antimycobacterial activity of <i>Indigofera suffruticosa </i> iwith activation potential of the innate immune system. Pharmaceutical Biology, 2010, 48, 878-882.	2.9	11
101	Chemical Composition and Antioxidant and Antimycobacterial Activities of <i>Bromelia balansae </i> (Bromeliaceae). Journal of Medicinal Food, 2010, 13, 1277-1280.	1.5	11
102	Paepalanthus spp: Antimycobacterial activity of extracts, methoxylated flavonoids and naphthopyranone fractions. Revista Brasileira De Farmacognosia, 2013, 23, 268-272.	1.4	11
103	C 2 ,N-dimethylbenzylamine cyclopalladated compounds: evaluation of cytotoxic, mutagenic and antitubercular activities. Medicinal Chemistry Research, 2015, 24, 2879-2888.	2.4	11
104	Pyrazolyl Pd(II) complexes containing triphenylphosphine: Synthesis and antimycobacterial activity. Polyhedron, 2015, 100, 10-16.	2.2	11
105	In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 798-799, 11-18.	1.7	11
106	Acid diterpenes from Copaiba oleoresin (Copaifera langsdorffii): Chemical and plasma stability and intestinal permeability using Caco-2 cells. Journal of Ethnopharmacology, 2019, 235, 183-189.	4.1	11
107	HPMCAS-Coated Alginate Microparticles Loaded with Ctx(Ile ²¹)-Ha as a Promising Antimicrobial Agent against <i>Salmonella</i> Enteritidis in a Chicken Infection Model. ACS Infectious Diseases, 2022, 8, 472-481.	3.8	11
108	Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Bioorganic Chemistry, 2021, 116, 105279.	4.1	10

#	Article	IF	Citations
109	Tapping into the antitubercular potential of 2,5-dimethylpyrroles: A structure-activity relationship interrogation. European Journal of Medicinal Chemistry, 2022, 237, 114404.	5. 5	10
110	Synthesis and Anti– <i>Mycobacterium tuberculosis</i> Evaluation of Aza-Stilbene Derivatives. Scientific World Journal, The, 2011, 11, 1113-1119.	2.1	9
111	Comparison of resazurin microtiter assay performance and BACTEC MGIT 960 in the susceptibility testing of Brazilian clinical isolates of Mycobacterium tuberculosis to four first-line drugs. Brazilian Journal of Microbiology, 2013, 44, 281-285.	2.0	9
112	First Baseline of Circulating Genotypic Lineages of Mycobacterium tuberculosis in Patients from the Brazilian Borders with Argentina and Paraguay. PLoS ONE, 2014, 9, e107106.	2.5	9
113	Modulatory effects of verapamil in rifampicin activity against <i>Mycobacterium tuberculosis</i> Future Microbiology, 2019, 14, 185-194.	2.0	9
114	Orthopalladated acetophenone oxime compounds bearing thioamides as ligands: Synthesis, structure and cytotoxic evaluation. Inorganica Chimica Acta, 2019, 486, 617-624.	2.4	9
115	Improving the Potency of <i>N</i> -Aryl-2,5-dimethylpyrroles against Multidrug-Resistant and Intracellular Mycobacteria. ACS Medicinal Chemistry Letters, 2020, 11, 638-644.	2.8	9
116	Benzofuroxan Derivatives as Potent Agents against Multidrugâ€Resistant ⟨i⟩Mycobacterium tuberculosis⟨ i⟩. ChemMedChem, 2021, 16, 1268-1282.	3.2	9
117	Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption. Bioorganic Chemistry, 2021, 109, 104668.	4.1	9
118	$\label{lem:cobalt} Cobalt (III)\ Complexes\ with\ Thiosemicarbazones\ as\ Potential\ anti-Mycobacterium\ tuberculosis Agents.$ Journal of the Brazilian\ Chemical\ Society, 2014, , .	0.6	8
119	Synthesis and antimycobacterial activity of new pyrazolate-bridged dinuclear complexes of the type [Pd(\hat{l}^1 /4-L)(N 3)(PPh 3)] 2 (PPh 3 = triphenylphosphine; L = pyrazolates). Inorganic Chemistry Communication, 2014, 48, 153-155.	3.9	8
120	Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Current Medicinal Chemistry, 2021, 28, 1906-1956.	2.4	8
121	Antitumor and anti-Mycobacterium tuberculosis agents based on cationic ruthenium complexes with amino acids. Inorganica Chimica Acta, 2017, 463, 1-6.	2.4	7
122	Furoxan derivatives demonstrated in vivo efficacy by reducing Mycobacterium tuberculosis to undetectable levels in a mouse model of infection. Biomedicine and Pharmacotherapy, 2020, 130, 110592.	5.6	7
123	Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115600.	3.0	7
124	Análise fitoquÃmica e atividade antimicobacteriana de extratos metanólicos de Jacaranda cuspidifolia Mart. (Bignoniaceae). Revista Brasileira De Plantas Medicinais, 2012, 14, 276-281.	0.3	7
125	Opportunistic Pathogens and Elements of the Resistome that Are Common in Bottled Mineral Water Support the Need for Continuous Surveillance. PLoS ONE, 2015, 10, e0121284.	2.5	6
126	Synthesis, Antitubercular and Leishmanicidal Evaluation of Resveratrol Analogues. Journal of the Brazilian Chemical Society, $2016, , .$	0.6	6

#	Article	IF	Citations
127	A Silver Complex with Cycloserine: Synthesis, Spectroscopic Characterization, Crystal Structure and In Vitro Biological Studies. ChemistrySelect, 2018, 3, 1719-1726.	1.5	6
128	Silver complexes with fluoroanthranilic acid isomers: Spectroscopic characterization, antimycobacterial activity and cytotoxic studies over a panel of tumor cells. Inorganica Chimica Acta, 2020, 502, 119293.	2.4	6
129	Chemical, spectroscopic characterization, molecular modeling and antibacterial activity assays of a silver (I) complex with succinic acid. Ecletica Quimica, 2021, 46, 26-35.	0.5	6
130	Thiazole, triazole, thio- and semicarbazone derivatives - Promising moieties for drug development for the treatment of tuberculosis. European Journal of Medicinal Chemistry Reports, 2021, 1, 100002.	1.4	6
131	New silver(I) phosphino complexes: Evaluation of their potential as prospective agents against Mycobacterium tuberculosis. Journal of Inorganic Biochemistry, 2022, 227, 111683.	3.5	6
132	Vanadium Complexes with Hydrazone or Thiosemicarbazone Ligands as Potential Anti-Mycobacterium tuberculosis Agents. Current Clinical Pharmacology, 2015, 10, 66-72.	0.6	5
133	Dualâ€protected amino acid derivatives as new antitubercular agents. Chemical Biology and Drug Design, 2018, 92, 1576-1580.	3.2	5
134	A Nanostructured Lipid System to Improve the Oral Bioavailability of Ruthenium(II) Complexes for the Treatment of Infections Caused by Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 2930.	3.5	5
135	Primary Lung Dendritic Cell Cultures to Assess Efficacy of Spectinamide-1599 Against Intracellular Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 1895.	3.5	5
136	Hydroalcoholic Extract of Myrcia bella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential. Planta Medica, 2022, 88, 405-415.	1.3	5
137	Recent advancement in drug development of nitro(<scp>NO₂</scp>)â€heterocyclic compounds as lead scaffolds for the treatment of <i>Mycobacterium tuberculosis</i> Development Research, 2022, 83, 842-858.	2.9	5
138	Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics, 2022, 14, 891.	4.5	5
139	Anti-Mycobacterium tuberculosis activity of fungus Phomopsis stipata. Brazilian Journal of Microbiology, 2012, 43, 224-229.	2.0	4
140	Bactericidal effect of pyridine-2-thiol 1-oxide sodium salt and its complex with iron against resistant clinical isolates of Mycobacterium tuberculosis. Journal of Antibiotics, 2020, 73, 120-124.	2.0	4
141	Cyto-genotoxic evaluation of novel anti-tubercular copper (II) complexes containing isoniazid-based ligands. Regulatory Toxicology and Pharmacology, 2020, 113, 104653.	2.7	4
142	Increment of Antimycobaterial Activity on Lichexanthone Derivatives. Medicinal Chemistry, 2013, 9, 904-910.	1.5	4
143	New Isoniazid Complexes, Promising Agents Against Mycobacterium tuberculosis. Journal of the Mexican Chemical Society, 2017, 57, .	0.6	4
144	Isoniazid and verapamil modulatory activity and efflux pump gene expression in <i>Mycobacterium tuberculosis</i> . International Journal of Tuberculosis and Lung Disease, 2020, 24, 591-596.	1.2	4

#	Article	IF	CITATIONS
145	Cyrhetrenyl and cymantrenyl N-acylhydrazone complexes based on isoniazid: Synthesis, characterization, X-ray crystal structures and antitubercular activity evaluation. Journal of Organometallic Chemistry, 2022, 964, 122299.	1.8	4
146	Pyrazinamide susceptibility testing in <i>Mycobacterium tuberculosis</i> using the fast resazurin microtiter assay plate. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1535-1538.	1.2	3
147	Synthesis, Antibacterial and Antitubercular Evaluation of Cardanol and Glycerol‑Based β-Amino Alcohol Derivatives. Journal of the Brazilian Chemical Society, 0, , .	0.6	3
148	Copper(II) biocompatible coordination solids as potential platforms for diclofenac delivery systems. Journal of Solid State Chemistry, 2020, 289, 121479.	2.9	3
149	Promising Ag(I) complexes with N-acylhydrazones from aromatic aldehydes and isoniazid against multidrug resistance in tuberculosis. Journal of Molecular Structure, 2021, 1234, 130193.	3.6	3
150	DNA interactions, antitubercular and cytotoxic activity of heteroleptic Cull complexes containing 1,10-phenanthroline. Journal of Molecular Structure, 2021, 1235, 130234.	3.6	3
151	MIL-100(Fe) Sub-Micrometric Capsules as a Dual Drug Delivery System. International Journal of Molecular Sciences, 2022, 23, 7670.	4.1	3
152	Experimental data on novel Fe(III)-complexes containing phenanthroline derivatives for their anticancer properties. Data in Brief, 2019, 27, 104548.	1.0	2
153	Benzenetriol-Derived Compounds against Citrus Canker. Molecules, 2021, 26, 1436.	3.8	2
154	Growth-inhibitory effects of tris- $(1,10$ -phenanthroline) iron (II) against Mycobacterium tuberculosis in vitro and in vivo. Tuberculosis, 2021, 128, 102087.	1.9	2
155	Systematic review on the proteomic profile of <i>Mycobacterium tuberculosis</i> exposed to drugs. Proteomics - Clinical Applications, 2017, 11, 1600077.	1.6	1
156	Structure/Activity of PtII/N,N-Disubstituted-N'-acylthiourea Complexes: Anti-Tumor and Anti-Mycobacterium tuberculosis Activities. Journal of the Brazilian Chemical Society, 2017, , .	0.6	1
157	Differential miRNA Expression in Human Macrophage-Like Cells Infected with Histoplasma capsulatum Yeasts Cultured in Planktonic and Biofilm Forms. Journal of Fungi (Basel, Switzerland), 2021, 7, 60.	3.5	1
158	Anti-Mycobacterium tuberculosisand Cytotoxicity Activities of Ruthenium(II)/Bipyridine/Diphosphine/Pyrimidine-2-thiolate Complexes: The Role of the Non-CoordinatedN-Atom. Journal of the Brazilian Chemical Society, 2015, , .	0.6	1
159	Mycobacterium tuberculosis and Paracoccidioides brasiliensis Formation and Treatment of Mixed Biofilm In Vitro. Frontiers in Cellular and Infection Microbiology, 2021, 11, 681131.	3.9	1
160	Profiling the Cymbopogon nardus Ethanol Extract and Its Antifungal Potential against Candida Species with Different Patterns of Resistance. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
161	Structural Rigidification of <i>N</i> -Aryl-pyrroles into Indoles Active against Intracellular and Drug-Resistant Mycobacteria. ACS Medicinal Chemistry Letters, 2022, 13, 63-69.	2.8	1
162	Avaliação das moléculas com atividade antiTB das plantas do cerrado brasileiro. Revista Portuguesa De Pneumologia, 2010, 16, S83-S88.	0.7	0

#	ARTICLE	IF	CITATIONS
163	Molecular characterization of Mycobacterium tuberculosis and Mycobacterium bovis isolates by Enterobacterial Repetitive Intergenic Consensus-PCR. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	0
164	Is the efflux pump inhibitor Verapamil a potential booster for isoniazid against Mycobacterium tuberculosis?. Brazilian Journal of Pharmaceutical Sciences, 0, 56, .	1.2	0
165	SYNTHESIS, CHARACTERIZATION, DFT MODELING AND IN VITRO ANTIMYCOBACTERIAL ACTIVITY ASSAYS OF A SILVER(I)-ISONIAZID COMPLEX. Quimica Nova, 2020, , .	0.3	0
166	Anti-Mycobacterium tuberculosis activity of fungus Phomopsis stipata. Brazilian Journal of Microbiology, 2012, 43, 224-9.	2.0	0
167	Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex. Journal of Microencapsulation, 2022, 39, 61-71.	2.8	0
168	An overview of sulfonamideâ€based conjugates: Recent advances for tuberculosis treatment. Drug Development Research, 2022, , .	2.9	0
169	Rescue of susceptibility to second-line drugs in resistant clinical isolates of <i>Mycobacterium tuberculosis</i> . Future Microbiology, 2022, 17, 511-527.	2.0	0
170	Gold(III) heteroleptic complexes with SNS-thiosemicarbazonate ligands as cytotoxic agents: Experimental and computational insights into the mechanism of action. Polyhedron, 2022, 219, 115767.	2.2	0