
## **Francis Aviles**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2503413/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Comparative Study of the Electrical and Electromechanical Responses of Carbon<br>Nanotube/Polypropylene Composites in Alternating and Direct Current. Sensors, 2022, 22, 484.                                         | 3.8 | 2         |
| 2  | Processingâ€structureâ€property relationship of multilayer graphene sheet thermosetting<br>nanocomposites manufactured by calendering. Polymer Composites, 2022, 43, 2150-2162.                                         | 4.6 | 7         |
| 3  | An Ultra-Low-Power Strain Sensing Node for Long-Range Wireless Networks in Carbon<br>Nanotube-Based Materials. IEEE Sensors Journal, 2022, 22, 9778-9786.                                                               | 4.7 | 3         |
| 4  | Functionalization of few-layer graphene sheets and carbon nanotubes for generation of hybrids and<br>their effect on the piezoresistive properties of polymeric nanocomposites. Synthetic Metals, 2022, 289,<br>117121. | 3.9 | 1         |
| 5  | Measurement of in-plane and out-of-plane elastic properties of woven fabric composites using digital image correlation. Journal of Composite Materials, 2021, 55, 1231-1246.                                            | 2.4 | 12        |
| 6  | An assessment of micromechanical models to predict the elastic constants of unidirectional polymer composites. Mechanics of Advanced Materials and Structures, 2021, 28, 1128-1146.                                     | 2.6 | 3         |
| 7  | Effect of Polymer Viscosity and Polymerization Kinetics on the Electrical Response of Carbon<br>Nanotube Yarn/Vinyl Ester Monofilament Composites. Polymers, 2021, 13, 783.                                             | 4.5 | 2         |
| 8  | Closed-form solution and analysis of the plate twist test in sandwich and laminated composites.<br>Mechanics of Materials, 2021, 155, 103753.                                                                           | 3.2 | 5         |
| 9  | Investigation of directional effects on the electrical conductivity and piezoresistivity of carbon<br>nanotube/polypropylene composites obtained by extrusion. Journal of Materials Science, 2021, 56,<br>14570-14586.  | 3.7 | 5         |
| 10 | Electromechanical properties of carbon-nanostructured elastomeric composites measured by digital image correlation. Composites Part C: Open Access, 2021, 5, 100161.                                                    | 3.2 | 3         |
| 11 | Influence of polymer matrix on the sensing capabilities of carbon nanotube polymeric thermistors.<br>Smart Materials and Structures, 2020, 29, 015012.                                                                  | 3.5 | 15        |
| 12 | Multifunctional sensing properties of polymer nanocomposites based on hybrid carbon nanostructures. Materials Today Communications, 2020, 25, 101472.                                                                   | 1.9 | 6         |
| 13 | Influence of electrode configuration on impact damage evaluation of self-sensing hierarchical composites. Journal of Intelligent Material Systems and Structures, 2020, 31, 1416-1429.                                  | 2.5 | 3         |
| 14 | Cyclic Thermoresistivity of Freestanding and Polymer Embedded Carbon Nanotube Yarns. Advanced<br>Engineering Materials, 2020, 22, 2000220.                                                                              | 3.5 | 8         |
| 15 | Electrical Resistance Sensing of Epoxy Curing Using an Embedded Carbon Nanotube Yarn. Sensors, 2020, 20, 3230.                                                                                                          | 3.8 | 7         |
| 16 | Flexural electromechanical properties of multilayer graphene sheet/carbon nanotube/vinyl ester<br>hybrid nanocomposites. Composites Science and Technology, 2020, 194, 108164.                                          | 7.8 | 10        |
| 17 | Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing. Smart Materials and Structures, 2020, 29, 115021.                            | 3.5 | 8         |
| 18 | Electrical self-sensing of impact damage in multiscale hierarchical composites with tailored location of carbon nanotube networks. Structural Health Monitoring, 2019, 18, 806-818.                                     | 7.5 | 8         |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Influence of concentration, length and orientation of multiwall carbon nanotubes on the electromechanical response of polymer nanocomposites. Materials Research Express, 2019, 6, 115024.                                         | 1.6  | 13        |
| 20 | Mechanical properties of l-lysine based segmented polyurethane vascular grafts and their shape memory potential. Materials Science and Engineering C, 2019, 102, 887-895.                                                          | 7.3  | 22        |
| 21 | Effects of temperature and tensile strain on the electrical resistance of nanometric gold films.<br>Materials Research Express, 2019, 6, 066407.                                                                                   | 1.6  | 5         |
| 22 | Electrical self-sensing of strain and damage of thermoplastic hierarchical composites subjected to<br>monotonic and cyclic tensile loading. Journal of Intelligent Material Systems and Structures, 2019, 30,<br>1527-1537.        | 2.5  | 4         |
| 23 | Design and analysis of a burst strength device for testing vascular grafts. Review of Scientific<br>Instruments, 2019, 90, 014301.                                                                                                 | 1.3  | 4         |
| 24 | Electrical characterization of carbon-based fibers and their application for sensing relaxation-induced piezoresistivity in polymer composites. Carbon, 2019, 145, 119-130.                                                        | 10.3 | 28        |
| 25 | Effect of carbon nanotube length on the piezoresistive response of poly (methyl methacrylate)<br>nanocomposites. European Polymer Journal, 2019, 110, 394-402.                                                                     | 5.4  | 22        |
| 26 | Electrophoretic deposition of carbon nanotubes onto glass fibers for self-sensing<br>relaxation-induced piezoresistivity of monofilament composites. Journal of Materials Science, 2019,<br>54, 2205-2221.                         | 3.7  | 7         |
| 27 | Examination of the plate twist specimen for thick specially orthotropic laminated composites and sandwich plates by using first-order shear deformation theory. Journal of Sandwich Structures and Materials, 2019, 21, 2239-2265. | 3.5  | 2         |
| 28 | Piezoresistivity, Strain, and Damage Selfâ€Sensing of Polymer Composites Filled with Carbon<br>Nanostructures. Advanced Engineering Materials, 2018, 20, 1701159.                                                                  | 3.5  | 107       |
| 29 | Prediction of circumferential compliance and burst strength of polymeric vascular grafts. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 332-340.                                                           | 3.1  | 25        |
| 30 | A comparative study on the mechanical, electrical and piezoresistive properties of polymer composites using carbon nanostructures of different topology. European Polymer Journal, 2018, 99, 394-402.                              | 5.4  | 35        |
| 31 | Selective damage sensing in multiscale hierarchical composites by tailoring the location of carbon nanotubes. Journal of Intelligent Material Systems and Structures, 2018, 29, 553-562.                                           | 2.5  | 30        |
| 32 | Thermoresistive mechanisms of carbon nanotube/polymer composites. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 41-50.                                                                                          | 2.7  | 34        |
| 33 | Deposition of Carbon Nanotubes on Fibers. , 2018, , 117-144.                                                                                                                                                                       |      | 11        |
| 34 | Improving Carbon Nanotube/Polymer Interactions in Nanocomposites. , 2018, , 83-115.                                                                                                                                                |      | 11        |
| 35 | Thermal conductivity and flammability of multiwall carbon nanotube/polyurethane foam composites.<br>Journal of Cellular Plastics, 2017, 53, 215-230.                                                                               | 2,4  | 18        |
| 36 | Influence of aramid fiber treatment and carbon nanotubes on the interfacial strength of polypropylene hierarchical composites. Composites Part B: Engineering, 2017, 122, 16-22.                                                   | 12.0 | 59        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Hierarchical multiscale modeling of the effect of carbon nanotube damage on the elastic properties of polymer nanocomposites. Journal of Mechanics of Materials and Structures, 2017, 12, 263-287.                                           | 0.6  | 4         |
| 38 | Effect of the type of plasma on the polydimethylsiloxane/collagen composites adhesive properties.<br>International Journal of Adhesion and Adhesives, 2017, 77, 85-95.                                                                       | 2.9  | 13        |
| 39 | Temperature coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films.<br>Thin Solid Films, 2017, 623, 84-89.                                                                                                    | 1.8  | 29        |
| 40 | The bond force constants and elastic properties of boron nitride nanosheets and nanoribbons using a<br>hierarchical modeling approach. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89,<br>183-193.                          | 2.7  | 16        |
| 41 | Experimental investigation of the thermoresistive response of multiwall carbon<br>nanotube/polysulfone composites under heating-cooling cycles. Composites Science and Technology,<br>2017, 151, 34-43.                                      | 7.8  | 17        |
| 42 | Influence of the morphology of carbon nanostructures on theÂpiezoresistivity of hybrid natural rubber nanocomposites. Composites Part B: Engineering, 2017, 109, 147-154.                                                                    | 12.0 | 44        |
| 43 | Influence of rigid segment content on the piezoresistive behavior of multiwall carbon<br>nanotube/segmented polyurethane composites. Journal of Applied Polymer Science, 2017, 134, .                                                        | 2.6  | 5         |
| 44 | Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading. Sensors, 2016, 16, 400.                                                                                         | 3.8  | 29        |
| 45 | Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers.<br>Applied Surface Science, 2016, 385, 379-390.                                                                                          | 6.1  | 65        |
| 46 | Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 7-21.                                                           | 2.7  | 14        |
| 47 | A dedicated electric oven for characterization of thermoresistive polymer nanocomposites. Journal of Applied Research and Technology, 2016, 14, 268-277.                                                                                     | 0.9  | 5         |
| 48 | Influence of Structural Defects on the Electrical Properties of Carbon Nanotubes and Their Polymer<br>Composites. Advanced Engineering Materials, 2016, 18, 1897-1905.                                                                       | 3.5  | 6         |
| 49 | An Assessment of the Role of Fiber Coating and Suspending Fluid on the Deposition of Carbon<br>Nanotubes onto Glass Fibers for Multiscale Composites. Advanced Engineering Materials, 2016, 18,<br>963-971.                                  | 3.5  | 9         |
| 50 | Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. Journal of Intelligent Material Systems and Structures, 2016, 27, 92-103.                                                       | 2.5  | 47        |
| 51 | A vibrating reed apparatus to measure the natural frequency of multilayered thin films. Measurement<br>Science and Technology, 2016, 27, 045002.                                                                                             | 2.6  | 2         |
| 52 | Influence of rigid segment and carbon nanotube concentration on the cyclic piezoresistive and<br>hysteretic behavior of multiwall carbon nanotube/segmented polyurethane composites. Composites<br>Science and Technology, 2016, 128, 25-32. | 7.8  | 88        |
| 53 | Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B: Engineering, 2016, 87, 350-356.                                                | 12.0 | 75        |
| 54 | Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Applied Surface Science, 2015, 349, 763-773.                                                 | 6.1  | 88        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The bond force constants of graphene and benzene calculated by density functional theory.<br>Molecular Physics, 2015, 113, 1297-1305.                                                                                     | 1.7  | 10        |
| 56 | Interactions between the glass fiber coating and oxidized carbon nanotubes. Applied Surface Science, 2015, 330, 383-392.                                                                                                  | 6.1  | 40        |
| 57 | Modeling of mesoscale dispersion effect on the piezoresistivity of carbon nanotube-polymer<br>nanocomposites via 3D computational multiscale micromechanics methods. Smart Materials and<br>Structures, 2015, 24, 065031. | 3.5  | 38        |
| 58 | Anisotropic compressive properties of multiwall carbon nanotube/polyurethane foams. Mechanics of Materials, 2015, 91, 167-176.                                                                                            | 3.2  | 23        |
| 59 | Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon, 2014, 69, 342-354.                                                        | 10.3 | 42        |
| 60 | The bond force constant and bulk modulus of C60. Computational Materials Science, 2014, 83, 120-126.                                                                                                                      | 3.0  | 16        |
| 61 | Influence of nanotube physicochemical properties on the decoration of multiwall carbon nanotubes with magnetic particles. Journal of Nanoparticle Research, 2014, 16, 1.                                                  | 1.9  | 6         |
| 62 | An assessment of finite element analysis to predict the elastic modulus and Poisson's ratio of singlewall carbon nanotubes. Computational Materials Science, 2014, 82, 257-263.                                           | 3.0  | 30        |
| 63 | Long term water uptake of a low density polyvinyl chloride foam and its effect on the foam microstructure and mechanical properties. Materials & Design, 2014, 57, 728-735.                                               | 5.1  | 10        |
| 64 | A vibrational approach to determine the elastic modulus of individual thin films in multilayers. Thin<br>Solid Films, 2014, 565, 228-236.                                                                                 | 1.8  | 19        |
| 65 | Influence of architecture on the Raman spectra of acid-treated carbon nanostructures. Journal of<br>Experimental Nanoscience, 2014, 9, 931-941.                                                                           | 2.4  | 19        |
| 66 | Analysis of twist stiffness of single and double-wall corrugated boards. Composite Structures, 2014, 110, 7-15.                                                                                                           | 5.8  | 14        |
| 67 | A beam specimen to measure the face/core fracture toughness of sandwich materials under a tearing loading mode. International Journal of Mechanical Sciences, 2014, 79, 84-94.                                            | 6.7  | 14        |
| 68 | On the Role of Fiber Coating in the Deposition of Multiwall Carbon Nanotubes Onto Glass Fibers.<br>Nanoscience and Nanotechnology Letters, 2014, 6, 932-935.                                                              | 0.4  | 8         |
| 69 | Tailored Self-sensing of Failure Mechanisms in Glass Fiber/Carbon Nanotube/Vinyl Ester Multiscale<br>Hierarchical Composites Loaded in Tension. Journal of Multifunctional Composites, 2014, 2, 171-181.                  | 0.2  | 4         |
| 70 | Mechanical and thermal properties of multiwalled carbon nanotube/polypropylene composites using itaconic acid as compatibilizer and coupling agent. Macromolecular Research, 2013, 21, 153-160.                           | 2.4  | 18        |
| 71 | Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. Journal of Materials Science, 2013, 48, 7587-7593.                                           | 3.7  | 37        |
| 72 | Self-sensing of elastic strain, matrix yielding and plasticity in multiwall carbon nanotube/vinyl ester composites. Smart Materials and Structures, 2013, 22, 085003.                                                     | 3.5  | 49        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Tensile piezoresistivity and disruption of percolation in singlewall and multiwall carbon nanotube/polyurethane composites. Synthetic Metals, 2013, 185-186, 96-102.                           | 3.9  | 17        |
| 74 | On the contribution of carbon nanotube deformation to piezoresistivity of carbon nanotube/polymer composites. Composites Part B: Engineering, 2013, 47, 200-206.                               | 12.0 | 66        |
| 75 | Evaluation of the plate twist test to characterize mode III fracture of sandwich panels with a face/core interface crack. Engineering Fracture Mechanics, 2013, 104, 41-55.                    | 4.3  | 11        |
| 76 | Influence of silane concentration on the silanization of multiwall carbon nanotubes. Carbon, 2013, 57, 520-529.                                                                                | 10.3 | 51        |
| 77 | Sensing of large strain using multiwall carbon nanotube/segmented polyurethane composites.<br>Journal of Applied Polymer Science, 2013, 130, 375-382.                                          | 2.6  | 48        |
| 78 | Influence of Processing Method on the Mechanical and Electrical Properties of MWCNT/PET Composites. Journal of Materials, 2013, 2013, 1-10.                                                    | 0.1  | 10        |
| 79 | First-order shear deformation analysis of the sandwich plate twist specimen. Journal of Sandwich<br>Structures and Materials, 2012, 14, 229-245.                                               | 3.5  | 12        |
| 80 | TEM Examination of MWCNTs Oxidized by Mild Experimental Conditions. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 49-55.                                                           | 2.1  | 19        |
| 81 | Vibration modeling and testing of bilayer beams for determination of film elastic modulus.<br>Measurement Science and Technology, 2012, 23, 045605.                                            | 2.6  | 7         |
| 82 | Influence of vacancies on the elastic properties of a graphene sheet. Computational Materials Science, 2012, 55, 255-262.                                                                      | 3.0  | 34        |
| 83 | Dynamics of carbon nanotube alignment by electric fields. Nanotechnology, 2012, 23, 465710.                                                                                                    | 2.6  | 100       |
| 84 | Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes. Carbon, 2012, 50, 2592-2598.                                     | 10.3 | 130       |
| 85 | A modified short beam shear specimen for characterization of interfacial strength in nanocomposites. Polymer Testing, 2012, 31, 792-799.                                                       | 4.8  | 6         |
| 86 | A Shear-Corrected Formulation for the Sandwich Twist Specimen. Experimental Mechanics, 2012, 52, 17-23.                                                                                        | 2.0  | 24        |
| 87 | On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications. Applied Physics A: Materials Science and Processing, 2012, 106, 843-852. | 2.3  | 30        |
| 88 | Experimental determination of torsion and shear properties of sandwich panels and laminated composites by the plate twist test. Composite Structures, 2011, 93, 1923-1928.                     | 5.8  | 15        |
| 89 | Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon, 2011, 49, 2989-2997.                                    | 10.3 | 265       |
| 90 | Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites. EXPRESS Polymer Letters, 2011, 5, 766-776.                                                                              | 2.1  | 42        |

| #   | Article                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Moisture absorption in foamâ€cored composite sandwich structures. Polymer Composites, 2010, 31,<br>714-722.                                                          | 4.6  | 7         |
| 92  | Correlations between mechanical stress, electrical conductivity and nanostructure in Al films on a polymer substrate. Materials Characterization, 2010, 61, 325-329. | 4.4  | 17        |
| 93  | Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sensors and Actuators A:<br>Physical, 2010, 159, 135-140.                                    | 4.1  | 113       |
| 94  | Mechanical degradation of foam-cored sandwich materials exposed to high moisture. Composite Structures, 2010, 92, 122-129.                                           | 5.8  | 31        |
| 95  | Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films.<br>EXPRESS Polymer Letters, 2010, 4, 292-299.                     | 2.1  | 170       |
| 96  | Modeling the influence of interphase on the elastic properties of carbon nanotube composites.<br>Computational Materials Science, 2010, 47, 926-933.                 | 3.0  | 51        |
| 97  | Elasto-plastic properties of gold thin films deposited onto polymeric substrates. Journal of Materials<br>Science, 2009, 44, 2590-2598.                              | 3.7  | 23        |
| 98  | Investigation of the Sandwich Plate Twist Test. Experimental Mechanics, 2009, 49, 813-822.                                                                           | 2.0  | 13        |
| 99  | Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon, 2009, 47, 2970-2975.                                                               | 10.3 | 531       |
| 100 | Failure investigation of debonded sandwich columns: An experimental and numerical study. Journal of Mechanics of Materials and Structures, 2009, 4, 1469-1487.       | 0.6  | 14        |
| 101 | Mechanical properties of gold nanometric films onto a polymeric substrate. Surface and Coatings<br>Technology, 2008, 202, 1556-1563.                                 | 4.8  | 20        |
| 102 | Determination of Elastic Modulus in a Bimaterial Through a One-dimensional Laminated Model.<br>Journal of Materials Engineering and Performance, 2008, 17, 482-488.  | 2.5  | 3         |
| 103 | Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes.<br>Composites Science and Technology, 2008, 68, 1422-1431.           | 7.8  | 138       |
| 104 | Analysis of the sandwich DCB specimen for debond characterization. Engineering Fracture Mechanics, 2008, 75, 153-168.                                                | 4.3  | 62        |
| 105 | Experimental studies of compression failure of sandwich specimens with face/core debond. , 2008, , 344-363.                                                          |      | 0         |
| 106 | Post-buckling and debond propagation in sandwich panels subject to in-plane compression.<br>Engineering Fracture Mechanics, 2007, 74, 794-806.                       | 4.3  | 20        |
| 107 | Experimental Study of Debonded Sandwich Panels under Compressive Loading. Journal of Sandwich<br>Structures and Materials, 2006, 8, 7-31.                            | 3.5  | 34        |
| 108 | Three-dimensional Finite Element Buckling Analysis of Debonded Sandwich Panels. Journal of<br>Composite Materials, 2006, 40, 993-1008.                               | 2.4  | 14        |

| #   | Article                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Influence of Face/Core Interface on Debond Toughness of Foam and Balsa Cored Sandwich. Journal of Sandwich Structures and Materials, 2006, 8, 237-258. | 3.5 | 29        |
| 110 | Elastic foundation analysis of local face buckling in debonded sandwich columns. Mechanics of Materials, 2005, 37, 1026-1034.                          | 3.2 | 16        |
| 111 | Crack path in foam cored DCB sandwich fracture specimens. Composites Science and Technology, 2005, 65, 2612-2621.                                      | 7.8 | 54        |
| 112 | PHYSICAL PROPERTIES OF AU AND AL THIN FILMS MEASURED BY RESISTIVE HEATING. Surface Review and Letters, 2005, 12, 101-106.                              | 1.1 | 18        |
| 113 | Dynamical thermal model for thin metallic film–substrate system with resistive heating. Applied Surface Science, 2003, 206, 336-344.                   | 6.1 | 9         |