
Ana Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2503066/publications.pdf Version: 2024-02-01

ANA SOADES

#	Article	lF	CITATIONS
1	Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 2008, 34, 1033-1049.	4.8	962
2	Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy, 2016, 179, 1251-1268.	5.1	333
3	Sensing and analysis of soluble phosphates in environmental samples: A review. Biosensors and Bioelectronics, 2013, 41, 1-11.	5.3	211
4	Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology (United Kingdom), 2011, 32, 921-932.	1.2	166
5	Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 2016, 502, 141-150.	4.1	136
6	Influence of Operating Parameters on the Biodegradation of Steroid Estrogens and Nonylphenolic Compounds during Biological Wastewater Treatment Processes. Environmental Science & Technology, 2009, 43, 6646-6654.	4.6	89
7	Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Current Opinion in Biotechnology, 2012, 23, 890-896.	3.3	86
8	The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates. Journal of Hazardous Materials, 2012, 199-200, 88-95.	6.5	85
9	Industrial wastewater treatment through bioaugmentation. Chemical Engineering Research and Design, 2018, 118, 178-187.	2.7	77
10	The ability of white-rot fungi to degrade the endocrine-disrupting compound nonylphenol. Applied Microbiology and Biotechnology, 2005, 66, 719-725.	1.7	76
11	Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal. Journal of Hazardous Materials, 2010, 175, 733-739.	6.5	71
12	Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnology Letters, 2003, 25, 731-738.	1.1	62
13	Economic evaluation of ion-exchange processes for nutrient removal and recovery from municipal wastewater. Npj Clean Water, 2020, 3, .	3.1	55
14	Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 2013, 47, 4853-4860.	5.3	54
15	ENERWATER – A standard method for assessing and improving the energy efficiency of wastewater treatment plants. Applied Energy, 2019, 242, 897-910.	5.1	53
16	Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process. Scientific Reports, 2020, 10, 12426.	1.6	53
17	An internal carbon source for improving biological nutrient removal. Bioresource Technology, 2009, 100, 149-154.	4.8	49
18	Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. Bioresource Technology, 2014, 159, 1-7.	4.8	49

ANA SOARES

#	Article	IF	CITATIONS
19	Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples. Analytica Chimica Acta, 2008, 612, 99-104.	2.6	47
20	ldentification of gas sparging regimes for granular anaerobic membrane bioreactor to enable energy neutral municipal wastewater treatment. Journal of Membrane Science, 2018, 555, 125-133.	4.1	47
21	Energy benchmarking in wastewater treatment plants: the importance of site operation and layout. Environmental Technology (United Kingdom), 2015, 36, 260-269.	1.2	46
22	Demonstration of ion exchange technology for phosphorus removal and recovery from municipal wastewater. Chemical Engineering Journal, 2021, 420, 129913.	6.6	44
23	Wastewater treatment in 2050: Challenges ahead and future vision in a European context. Environmental Science and Ecotechnology, 2020, 2, 100030.	6.7	43
24	The impact of background wastewater constituents on the selectivity and capacity of a hybrid ion exchange resin for phosphorus removal from wastewater. Chemosphere, 2019, 224, 494-501.	4.2	41
25	Biodegradation of nonylphenol in a continuous bioreactor at low temperatures and effects on the microbial population. Applied Microbiology and Biotechnology, 2006, 69, 597-606.	1.7	39
26	Fate of Alkylphenolic Compounds during Activated Sludge Treatment: Impact of Loading and Organic Composition. Environmental Science & Technology, 2011, 45, 248-254.	4.6	35
27	Performance and stability of sewage sludge digestion under CO2 enrichment: A pilot study. Bioresource Technology, 2017, 245, 581-589.	4.8	35
28	Bioâ€ <scp>S</scp> truvite: A New Route to Recover Phosphorus from Wastewater. Clean - Soil, Air, Water, 2014, 42, 994-997.	0.7	32
29	Gas to liquid mass transfer in rheologically complex fluids. Chemical Engineering Journal, 2015, 273, 656-667.	6.6	32
30	Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor. Applied Microbiology and Biotechnology, 2006, 72, 591-599.	1.7	29
31	Influence of carrier media physical properties on start-up of moving attached growth systems. Bioresource Technology, 2018, 266, 463-471.	4.8	29
32	The role of pH on the biological struvite production in digested sludge dewatering liquors. Scientific Reports, 2018, 8, 7225.	1.6	27
33	Impact of carrier media on oxygen transfer and wastewater hydrodynamics on a moving attached growth system. Chemical Engineering Journal, 2018, 351, 399-408.	6.6	27
34	Bioconversion of carbon dioxide in anaerobic digesters for on-site carbon capture and biogas enhancement – A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 1555-1580.	6.6	26
35	Comparison of fouling between aerobic and anaerobic MBR treating municipal wastewater. H2Open Journal, 2018, 1, 131-159.	0.8	26
36	Nutrient metabolism, mass balance, and microbial structure community in a novel denitrifying phosphorus removal system based on the utilizing rules of acetate and propionate. Chemosphere, 2020, 257, 127076.	4.2	26

ANA SOARES

#	Article	IF	CITATIONS
37	Biological carbon dioxide utilisation in food waste anaerobic digesters. Water Research, 2015, 87, 467-475.	5.3	25
38	Resource dependent biodegradation of estrogens and the role of ammonia oxidising and heterotrophic bacteria. Journal of Hazardous Materials, 2012, 239-240, 56-63.	6.5	24
39	Ammonia recovery from brines originating from a municipal wastewater ion exchange process and valorization of recovered nitrogen into microbial protein. Chemical Engineering Journal, 2022, 427, 130896.	6.6	24
40	Resilience and life cycle assessment of ion exchange process for ammonium removal from municipal wastewater. Science of the Total Environment, 2021, 783, 146834.	3.9	23
41	Biodegradation of nonylphenol in a continuous packed-bed bioreactor. Biotechnology Letters, 2003, 25, 927-933.	1.1	21
42	Influence of Agitation on the Removal of Nonylphenol by the White-rot Fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnology Letters, 2006, 28, 139-143.	1.1	21
43	Nitrogen removal from coke making wastewater through a pre-denitrification activated sludge process. Science of the Total Environment, 2019, 666, 31-38.	3.9	21
44	Sustaining membrane permeability during unsteady-state operation of anaerobic membrane bioreactors for municipal wastewater treatment following peak-flow. Journal of Membrane Science, 2018, 564, 289-297.	4.1	20
45	The mechanisms of struvite biomineralization in municipal wastewater. Science of the Total Environment, 2021, 799, 149261.	3.9	20
46	Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies. Science of the Total Environment, 2021, 755, 142684.	3.9	19
47	A molecular imprinted polymer based sensor for measuring phosphate in wastewater samples. Water Science and Technology, 2014, 69, 48-54.	1.2	18
48	Conductance based sensing and analysis of soluble phosphates in wastewater. Biosensors and Bioelectronics, 2014, 52, 173-179.	5.3	18
49	Alkalinity and external carbon requirements for denitrification-nitrification of coke wastewater. Environmental Technology (United Kingdom), 2018, 39, 2266-2277.	1.2	18
50	Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. Journal of Water Process Engineering, 2019, 28, 181-189.	2.6	17
51	Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals. Environmental Science and Ecotechnology, 2020, 3, 100052.	6.7	17
52	Hydrolysis and Methanogenesis in UASB-AnMBR Treating Municipal Wastewater Under Psychrophilic Conditions: Importance of Reactor Configuration and Inoculum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 567695.	2.0	17
53	Establishing the mechanisms underpinning solids breakthrough in UASB configured anaerobic membrane bioreactors to mitigate fouling. Water Research, 2020, 176, 115754.	5.3	17
54	A novel approach to the anaerobic treatment of municipal wastewater in temperate climates through primary sludge fortification. Environmental Technology (United Kingdom), 2009, 30, 985-994.	1.2	14

ANA SOARES

#	Article	IF	CITATIONS
55	Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater. Bioresource Technology, 2019, 288, 121524.	4.8	13
56	Understanding the biochemical characteristics of struvite bio-mineralising microorganisms and their future in nutrient recovery. Chemosphere, 2020, 247, 125799.	4.2	13
57	Understanding the mechanisms of biological struvite biomineralisation. Chemosphere, 2021, 281, 130986.	4.2	13
58	Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater. Chemosphere, 2022, 286, 131581.	4.2	13
59	Enhancing the removal of hazardous pollutants from cokeâ€making wastewater by dosing activated carbon to a pilotâ€scale activated sludge process. Journal of Chemical Technology and Biotechnology, 2017, 92, 2325-2333.	1.6	12
60	Enhancing the removal of pollutants from coke wastewater by bioaugmentation: A scoping study. Journal of Chemical Technology and Biotechnology, 2018, 93, 2535-2543.	1.6	10
61	Biodegradation of phenol at low temperature using two-phase partitioning bioreactors. Water Science and Technology, 2005, 52, 97-105.	1.2	9
62	Understanding the growth of the bio-struvite production <i>Brevibacterium antiquum</i> in sludge liquors. Environmental Technology (United Kingdom), 2018, 39, 2278-2287.	1.2	9
63	Evaluation of a Full-Scale Suspended Sludge Deammonification Technology Coupled with an Hydrocyclone to Treat Thermal Hydrolysis Dewatering Liquors. Processes, 2021, 9, 278.	1.3	9
64	Biotreatment of Hydrate-Inhibitor-Containing Produced Waters at Low pH. SPE Journal, 2015, 20, 1254-1260.	1.7	8
65	Enhancing the anaerobic digestion process through carbon dioxide enrichment: initial insights into mechanisms of utilization. Environmental Technology (United Kingdom), 2019, 40, 1744-1755.	1.2	8
66	Influence of internal fluid velocities and media fill ratio on submerged aerated filter hydrodynamics and process performance for municipal wastewater treatment. Chemical Engineering Research and Design, 2018, 114, 179-191.	2.7	6
67	Development and calibration of a new mathematical model for the description of an ion-exchange process for ammonia removal in the presence of competing ions. Water Research, 2021, 206, 117779.	5.3	6
68	Treatment and Energy Efficiency of a Granular Sludge Anaerobic Membrane Reactor Handling Domestic Sewage. Procedia Engineering, 2012, 44, 1977-1979.	1.2	4
69	Ecological conditions of ponds situated on blast furnace slag deposits located in South Gare Site of Special Scientific Interest (SSSI), Teesside, UK. Environmental Geochemistry and Health, 2015, 37, 545-556.	1.8	4
70	Gaps in Regulation and Policies on the Application of Green Technologies at Household Level in the United Kingdom. Sustainability, 2022, 14, 4030.	1.6	4
71	Reuse Of Urban Water: Impact Of Product Choice. , 2008, , 13-22.		2
72	Optimization of a fullâ€scale site to achieve total nitrogen removal through implementation of a denitrificationâ€submerged anoxic filter. Water and Environment Journal, 2018, 32, 242-249.	1.0	2

#	Article	IF	CITATIONS
73	Ammonia removal from mixed dewatering liquors by three different deammonification technologies. Environmental Science: Water Research and Technology, 2020, 6, 3440-3450.	1.2	1