
Stefan A Rensing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2502787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	12.6	1,712
2	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	12.6	794
3	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
4	PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research, 2010, 38, D822-D827.	14.5	635
5	Genomic Analysis of Organismal Complexity in the Multicellular Green Alga <i>Volvox carteri</i> . Science, 2010, 329, 223-226.	12.6	536
6	Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote. Science, 2013, 339, 1207-1210.	12.6	439
7	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
8	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	5.7	406
9	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	9.3	391
10	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	27.8	377
11	<i>Cyanophora paradoxa</i> Genome Elucidates Origin of Photosynthesis in Algae and Plants. Science, 2012, 335, 843-847.	12.6	371
12	The WUS homeobox-containing (WOX) protein family. Genome Biology, 2009, 10, 248.	9.6	354
13	Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252.	7.1	307
14	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	6.4	279
15	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	9.3	225
16	Gene duplication as a driver of plant morphogenetic evolution. Current Opinion in Plant Biology, 2014, 17, 43-48.	7.1	191
17	The Moss <i>Physcomitrium</i> (<i>Physcomitrella</i>) <i>patens</i> : A Model Organism for Non-Seed Plants. Plant Cell, 2020, 32, 1361-1376.	6.6	188
18	The Biotrophic Development of <i>Ustilago maydis</i> Studied by RNA-Seq Analysis. Plant Cell, 2018, 30, 300-323.	6.6	186

#	Article	IF	CITATIONS
19	Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity. Genome Biology and Evolution, 2010, 2, 488-503.	2.5	174
20	An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology, 2007, 7, 130.	3.2	171
21	Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics, 2013, 14, 498.	2.8	170
22	Great moments in evolution: the conquest of land by plants. Current Opinion in Plant Biology, 2018, 42, 49-54.	7.1	153
23	The Molecular and Physiological Responses of <i>Physcomitrella patens</i> to Ultraviolet-B Radiation Â Â. Plant Physiology, 2010, 153, 1123-1134.	4.8	152
24	<i>WOX13</i> - <i>like</i> genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2014, 141, 1660-1670.	2.5	136
25	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134
26	Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development (Cambridge), 2009, 136, 2433-2444.	2.5	133
27	Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends in Plant Science, 2008, 13, 542-549.	8.8	132
28	The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Research, 2006, 34, 6205-6214.	14.5	126
29	The evolution of nuclear auxin signalling. BMC Evolutionary Biology, 2009, 9, 126.	3.2	115
30	The <i>Physcomitrella patens</i> gene atlas project: largeâ€scale <scp>RNA</scp> â€seq based expression data. Plant Journal, 2018, 95, 168-182.	5.7	115
31	Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Molecular Biology, 2010, 72, 27-45.	3.9	110
32	Origin and evolution of PIN auxin transporters in the green lineage. Trends in Plant Science, 2013, 18, 5-10.	8.8	109
33	Day Length and Temperature Strongly Influence Sexual Reproduction and Expression of a Novel MADS-Box Gene in the MossPhyscomitrella patens. Plant Biology, 2002, 4, 595-602.	3.8	105
34	RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Molecular Genetics and Genomics, 2009, 281, 473-481.	2.1	103
35	Visualization of a Cytoskeleton-like Ftsz Network in Chloroplasts. Journal of Cell Biology, 2000, 151, 945-950.	5.2	102
36	Moss transcriptome and beyond. Trends in Plant Science, 2002, 7, 535-538.	8.8	102

#	Article	IF	CITATIONS
37	Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE (ANR), a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell, 2016, 28, tpc.00091.2016.	6.6	98
38	Phylogenomic analysis of gene coâ€expression networks reveals the evolution of functional modules. Plant Journal, 2017, 90, 447-465.	5.7	97
39	Representation and Highâ€Quality Annotation of thePhyscomitrella patensTranscriptome Demonstrates a High Proportion of Proteins Involved in Metabolism in Mosses. Plant Biology, 2005, 7, 238-250.	3.8	96
40	Comprehensive Genome-Wide Classification Reveals That Many Plant-Specific Transcription Factors Evolved in Streptophyte Algae. Genome Biology and Evolution, 2017, 9, 3384-3397.	2.5	95
41	The chromatin landscape of the moss <i>Physcomitrella patens</i> and its dynamics during development and drought stress. Plant Journal, 2014, 79, 67-81.	5.7	91
42	Massive Protein Import into the Early-Evolutionary-Stage Photosynthetic Organelle of the Amoeba Paulinella chromatophora. Current Biology, 2017, 27, 2763-2773.e5.	3.9	91
43	Why we need more nonâ€seed plant models. New Phytologist, 2017, 216, 355-360.	7.3	90
44	Complex chloroplast RNA metabolism: just debugging the genetic programme?. BMC Biology, 2008, 6, 36.	3.8	87
45	Largeâ€scale gene expression profiling data for the model moss <i><scp>P</scp>hyscomitrella patens</i> aid understanding of developmental progression, culture and stress conditions. Plant Journal, 2014, 79, 530-539.	5.7	82
46	PlanTAPDB, a Phylogeny-Based Resource of Plant Transcription-Associated Proteins. Plant Physiology, 2007, 143, 1452-1466.	4.8	79
47	Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites. BMC Plant Biology, 2006, 6, 9.	3.6	78
48	PEATmoss (<i>Physcomitrella</i> Expression Atlas Tool): a unified gene expression atlas for the model plant <i>Physcomitrella patens</i> . Plant Journal, 2020, 102, 165-177.	5.7	74
49	Prediction of dual protein targeting to plant organelles. New Phytologist, 2009, 183, 224-236.	7.3	73
50	ppdb: plant promoter database version 3.0. Nucleic Acids Research, 2014, 42, D1188-D1192.	14.5	61
51	Characterization of Phytochrome Interacting Factors from the Moss <i>Physcomitrella patens</i> Illustrates Conservation of Phytochrome Signaling Modules in Land Plants. Plant Cell, 2017, 29, 310-330.	6.6	61
52	THE SPECIATION HISTORY OF THE <i>PHYSCOMITRIUM-PHYSCOMITRELLA</i> SPECIES COMPLEX. Evolution; International Journal of Organic Evolution, 2010, 64, 217-231.	2.3	59
53	Developmental Control and Plasticity of Fruit and Seed Dimorphism in <i>Aethionema arabicum</i> . Plant Physiology, 2016, 172, 1691-1707.	4.8	59
54	Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics, 2005, 6, 43.	2.8	56

#	Article	IF	CITATIONS
55	Sexual reproduction, sporophyte development and molecular variation in the model moss <i>Physcomitrella patens</i> : introducing the ecotype Reute. Plant Journal, 2017, 90, 606-620.	5.7	56
56	Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom <i>Phaeodactylum tricornutum</i> . Genome Biology and Evolution, 2015, 7, 2955-2969.	2.5	53
57	Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. Science Advances, 2021, 7, .	10.3	53
58	Generation-Biased Gene Expression in a Bryophyte Model System. Molecular Biology and Evolution, 2011, 28, 803-812.	8.9	49
59	Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrellaspecies complex. BMC Evolutionary Biology, 2014, 14, 158.	3.2	48
60	A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature, 2019, 565, 650-653.	27.8	48
61	The evolution of eukaryotic cells from the perspective of peroxisomes. BioEssays, 2015, 37, 195-203.	2.5	47
62	Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118.	3.9	47
63	Assigning DYWâ€ŧype PPR proteins to RNA editing sites in the funariid mosses <i>Physcomitrella patens</i> and <i>Funaria hygrometrica</i> . Plant Journal, 2011, 67, 370-380.	5.7	46
64	Largeâ€Scale Analysis of 73 329 Physcomitrella Plants Transformed with Different Gene Disruption Libraries: Production Parameters and Mutant Phenotypes. Plant Biology, 2005, 7, 228-237.	3.8	45
65	Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. BMC Plant Biology, 2014, 14, 178.	3.6	44
66	<i>De novo</i> assembly and comparative analysis of the <i><scp>C</scp>eratodon purpureus</i> transcriptome. Molecular Ecology Resources, 2015, 15, 203-215.	4.8	43
67	A sequenceâ€anchored genetic linkage map for the moss, <i>Physcomitrella patens</i> . Plant Journal, 2008, 56, 855-866.	5.7	42
68	Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10168-10173.	7.1	41
69	EST Sequencing from Embryogenic Cyclamen persicum Cell Cultures Identifies a High Proportion of Transcripts Homologous to Plant Genes Involved in Somatic Embryogenesis. Journal of Plant Growth Regulation, 2005, 24, 102-115.	5.1	37
70	(Why) Does Evolution Favour Embryogenesis?. Trends in Plant Science, 2016, 21, 562-573.	8.8	37
71	Diversification of fts Z During Early Land Plant Evolution. Journal of Molecular Evolution, 2004, 58, 154-162.	1.8	33
72	Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants, 2020, 6, 1031-1043.	9.3	33

#	Article	IF	CITATIONS
73	Aethionema arabicum: a novel model plant to study the light control of seed germination. Journal of Experimental Botany, 2019, 70, 3313-3328.	4.8	31
74	Prediction and Validation of Promoters Involved in the Abscisic Acid Response in Physcomitrella patens. Molecular Plant, 2011, 4, 713-729.	8.3	30
75	ABA-Induced Vegetative Diaspore Formation in Physcomitrella patens. Frontiers in Plant Science, 2019, 10, 315.	3.6	30
76	Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent developmentin the moss Physcomitrella patens. Journal of Experimental Botany, 2012, 63, 5121-5135.	4.8	29
77	Green Targeting Predictor and Ambiguous Targeting Predictor 2: the pitfalls of plant protein targeting prediction and of transient protein expression in heterologous systems. New Phytologist, 2013, 200, 1022-1033.	7.3	29
78	Phytochromes: More Than Meets the Eye. Trends in Plant Science, 2016, 21, 543-546.	8.8	29
79	Three rings for the evolution of plastid shape: a tale of land plant FtsZ. Protoplasma, 2017, 254, 1879-1885.	2.1	28
80	Means to optimize protein expression in transgenic plants. Current Opinion in Biotechnology, 2015, 32, 61-67.	6.6	27
81	How Plants Conquered Land. Cell, 2020, 181, 964-966.	28.9	27
82	Network Theory Inspired Analysis of Time-Resolved Expression Data Reveals Key Players Guiding P. patens Stem Cell Development. PLoS ONE, 2013, 8, e60494.	2.5	27
83	Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. New Phytologist, 2020, 227, 440-454.	7.3	26
84	The Evolution of Transcriptional Regulation in the Viridiplantae and its Correlation with Morphological Complexity. Advances in Marine Genomics, 2015, , 301-333.	1.2	23
85	Single Nucleotide Polymorphism Charting of P. patens Reveals Accumulation of Somatic Mutations During in vitro Culture on the Scale of Natural Variation by Selfing. Frontiers in Plant Science, 2020, 11, 813.	3.6	22
86	Selfing in Haploid Plants and Efficacy of Selection: Codon Usage Bias in the Model Moss Physcomitrella patens. Genome Biology and Evolution, 2017, 9, 1528-1546.	2.5	21
87	When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in <i>Aethionema</i> . Plant Journal, 2018, 94, 352-371.	5.7	20
88	DEK1 displays a strong subcellular polarity during Physcomitrella patens 3D growth. New Phytologist, 2020, 226, 1029-1041.	7.3	20
89	<i>Aethionema arabicum</i> genome annotation using PacBio fullâ€length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant Journal, 2021, 106, 275-293.	5.7	20
90	Rocket Science: The Effect of Spaceflight on Germination Physiology, Ageing, and Transcriptome of Eruca sativa Seeds. Life, 2020, 10, 49.	2.4	19

#	Article	IF	CITATIONS
91	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18
92	Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics, 2019, 20, 95.	2.8	18
93	The DEK1 calpain Linker functions in three-dimensional body patterning in Physcomitrella patens. Plant Physiology, 2016, 172, pp.00925.2016.	4.8	17
94	Evolution of the Symbiosis-Specific GRAS Regulatory Network in Bryophytes. Frontiers in Plant Science, 2018, 9, 1621.	3.6	17
95	Physcomitrella patens Reute mC herry as a tool for efficient crossing within and between ecotypes. Plant Biology, 2019, 21, 143-149.	3.8	17
96	Characterization of <i>spa</i> mutants in the moss <i>Physcomitrella</i> provides evidence for functional divergence of <i><scp>SPA</scp></i> genes during the evolution of land plants. New Phytologist, 2019, 224, 1613-1626.	7.3	17
97	Genome Improvement and Genetic Map Construction for <i>Aethionema arabicum</i> , the First Divergent Branch in the Brassicaceae Family. G3: Genes, Genomes, Genetics, 2019, 9, 3521-3530.	1.8	17
98	Detection of somatic epigenetic variation in Norway spruce via targeted bisulfite sequencing. Ecology and Evolution, 2018, 8, 9672-9682.	1.9	16
99	Evolutionary Importance of Generative Polyploidy for Genome Evolution of Haploid-Dominant Land Plants. , 2013, , 295-305.		14
100	Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens. BMC Plant Biology, 2010, 10, 76.	3.6	13
101	A Single-Target Mitochondrial RNA Editing Factor of Funaria hygrometrica Can Fully Reconstitute RNA Editing at Two Sites in Physcomitrella patens. Plant and Cell Physiology, 2017, 58, 496-507.	3.1	13
102	Analysis of the Localization of Fluorescent PpROP1 and PpROP-GEF4 Fusion Proteins in Moss Protonemata Based on Genomic "Knock-In―and Estradiol-Titratable Expression. Frontiers in Plant Science, 2019, 10, 456.	3.6	13
103	Detection of SNPs based on transcriptome sequencing in Norway spruce (Picea abies (L.) Karst). Conservation Genetics Resources, 2016, 8, 105-107.	0.8	12
104	Unveiling the nature of a miniature world: a horizon scan of fundamental questions in bryology. Journal of Bryology, 2022, 44, 1-34.	1.2	12
105	Gene gains paved the path to land. Nature Plants, 2020, 6, 7-8.	9.3	11
106	An overview of bioinformatics, genomics, and transcriptomics resources for bryophytes. Journal of Experimental Botany, 2022, 73, 4291-4305.	4.8	11
107	Iron–Sulfur Cluster Biosynthesis in Algae with Complex Plastids. Genome Biology and Evolution, 2018, 10, 2061-2071.	2.5	9
108	HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. Plant Reproduction, 2021, 34, 149-173.	2.2	9

#	Article	IF	CITATIONS
109	Polyploidization within the Funariaceae—a key principle behind speciation, sporophyte reduction and the high variance of spore diameters?. Bryophyte Diversity and Evolution, 2021, 43, .	1.1	9
110	Signatures of Transcription Factor Evolution and the Secondary Gain of Red Algae Complexity. Genes, 2021, 12, 1055.	2.4	9
111	The greening ashore. Trends in Plant Science, 2022, 27, 847-857.	8.8	9
112	Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens. Frontiers in Plant Science, 2017, 8, 1842.	3.6	8
113	The intracellular distribution of the components of the GET system in vascular plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1650-1662.	4.1	8
114	Are fungiâ€derived genomic regions related to antagonism towards fungi in mosses?. New Phytologist, 2020, 228, 1169-1175.	7.3	8
115	A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). Plant Journal, 2021, 107, 166-181.	5.7	8
116	A blind and independent benchmark study for detecting differentially methylated regions in plants. Bioinformatics, 2020, 36, 3314-3321.	4.1	7
117	EpiDiverse Toolkit: a pipeline suite for the analysis of bisulfite sequencing data in ecological plant epigenetics. NAR Genomics and Bioinformatics, 2021, 3, lqab106.	3.2	7
118	The EpiDiverse Plant Epigenome-Wide Association Studies (EWAS) Pipeline. Epigenomes, 2021, 5, 12.	1.8	6
119	Characterization of a maize ribosomal P2 protein cDNA and phylogenetic analysis of the P1/P2 family of ribosomal proteins. Plant Molecular Biology, 1996, 30, 655-658.	3.9	5
120	Flowering plant embryos: How did we end up here?. Plant Reproduction, 2021, 34, 365-371.	2.2	5
121	A vertically transmitted amalgavirus is present in certain accessions of the bryophyte <i>Physcomitrium patens</i> . Plant Journal, 2021, 108, 1786-1797.	5.7	5
122	Comparative Genomics. , 0, , 42-75.		4
123	Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genetics and Biology, 2021, 152, 103570.	2.1	3
124	Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae). BMC Plant Biology, 2022, 22, .	3.6	3
125	Plant Evo–Devo: How Tip Growth Evolved. Current Biology, 2016, 26, R1228-R1230.	3.9	2
126	Editorial: Highlights of IAB IMOSS SEB 2019 Joint Conference. Frontiers in Plant Science, 2021, 12, 694765.	3.6	0

#	Article	IF	CITATIONS
127	Molecular biology of mosses. Plant Molecular Biology, 2021, 107, 209-211.	3.9	0