## Robin Arthur Hutchinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2502729/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Critically evaluated rate coefficients for free-radical polymerization, 1. Propagation rate coefficient for styrene. Macromolecular Chemistry and Physics, 1995, 196, 3267-3280.              | 2.2 | 617       |
| 2  | Critically evaluated rate coefficients for free-radical polymerization, 2 Propagation rate coefficients for methyl methacrylate. Macromolecular Chemistry and Physics, 1997, 198, 1545-1560.  | 2.2 | 524       |
| 3  | Critically Evaluated Rate Coefficients for Free-Radical Polymerization, 5,. Macromolecular Chemistry and Physics, 2004, 205, 2151-2160.                                                       | 2.2 | 360       |
| 4  | Determination of Free-Radical Propagation Rate Coefficients of Butyl, 2-Ethylhexyl, and Dodecyl Acrylates by Pulsed-Laser Polymerization. Macromolecules, 1996, 29, 4206-4215.                | 4.8 | 318       |
| 5  | Critically evaluated rate coefficients for free-radical polymerization, 3. Propagation rate coefficients for alkyl methacrylates. Macromolecular Chemistry and Physics, 2000, 201, 1355-1364. | 2.2 | 274       |
| 6  | Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology. Journal of Applied Polymer Science, 1992, 44, 1389-1414.                             | 2.6 | 203       |
| 7  | Determination of Intramolecular Chain Transfer and Midchain Radical Propagation Rate Coefficients for Butyl Acrylate by Pulsed Laser Polymerization. Macromolecules, 2007, 40, 8631-8641.     | 4.8 | 177       |
| 8  | Analysis of pulsed-laser-generated molecular weight distributions for the determination of propagation rate coefficients. Macromolecules, 1993, 26, 6410-6415.                                | 4.8 | 151       |
| 9  | Critically Evaluated Rate Coefficients for Free-Radical Polymerization, 4. Macromolecular Chemistry and Physics, 2003, 204, 1338-1350.                                                        | 2.2 | 130       |
| 10 | Secondary Reactions in the High-Temperature Free Radical Polymerization of Butyl Acrylate.<br>Macromolecules, 2004, 37, 5944-5951.                                                            | 4.8 | 130       |
| 11 | A Pulsed-Laser Study of Penultimate Copolymerization Propagation Kinetics for Methyl<br>Methacrylate/n-Butyl Acrylate. Industrial & Engineering Chemistry Research, 1997, 36, 1103-1113.      | 3.7 | 129       |
| 12 | Determination of Free-Radical Propagation Rate Coefficients for Alkyl Methacrylates by Pulsed-Laser<br>Polymerization. Macromolecules, 1997, 30, 3490-3493.                                   | 4.8 | 124       |
| 13 | Critically evaluated rate coefficients in radical polymerization – 7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk. Polymer Chemistry, 2014, 5, 204-212.   | 3.9 | 118       |
| 14 | The Effect of Intramolecular Transfer to Polymer on Stationary Free Radical Polymerization of Alkyl<br>Acrylates. Macromolecules, 2005, 38, 1581-1590.                                        | 4.8 | 112       |
| 15 | Determination of Propagation Rate Coefficients by Pulsed-Laser Polymerization for Systems with Rapid<br>Chain Growth: Vinyl Acetate. Macromolecules, 1994, 27, 4530-4537.                     | 4.8 | 111       |
| 16 | Studies of higher temperature polymerization ofn-butyl methacrylate andn-butyl acrylate.<br>Macromolecular Symposia, 2002, 182, 149-168.                                                      | 0.7 | 109       |
| 17 | Propagation Rate Coefficient for Radical Polymerization of <i>N</i> -Vinyl Pyrrolidone in Aqueous<br>Solution Obtained by PLPâ^'SEC. Macromolecules, 2008, 41, 5174-5185.                     | 4.8 | 99        |
| 18 | Îμ-Caprolactone-Based Macromonomers Suitable for Biodegradable Nanoparticles Synthesis through<br>Free Radical Polymerization. Macromolecules, 2011, 44, 9205-9212.                           | 4.8 | 90        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends.<br>Macromolecules, 2013, 46, 3828-3840.                                                                                                        | 4.8 | 90        |
| 20 | Short-Chain Branching Structures in Ethylene Copolymers Prepared by High-Pressure Free-Radical<br>Polymerization:  An NMR Analysis. Macromolecules, 1997, 30, 246-256.                                                                         | 4.8 | 82        |
| 21 | Determination of Free-Radical Propagation Rate Coefficients for Cycloalkyl and Functional Methacrylates by Pulsed-Laser Polymerization. Macromolecules, 1998, 31, 1542-1547.                                                                   | 4.8 | 82        |
| 22 | High-Temperature Semibatch Free Radical Copolymerization of Butyl Methacrylate and Butyl Acrylate.<br>Industrial & Engineering Chemistry Research, 2005, 44, 2506-2517.                                                                        | 3.7 | 75        |
| 23 | ARGET ATRP of Methacrylates and Acrylates with Stoichiometric Ratios of Ligand to Copper.<br>Macromolecular Chemistry and Physics, 2008, 209, 1797-1805.                                                                                       | 2.2 | 74        |
| 24 | Copperâ€mediated controlled radical polymerization in continuous flow processes: Synergy between polymer reaction engineering and innovative chemistry. Journal of Polymer Science Part A, 2013, 51, 3081-3096.                                | 2.3 | 74        |
| 25 | Effect of Intramolecular Transfer to Polymer on Stationary Freeâ€Radical Polymerization of Alkyl<br>Acrylates, 5 – Consideration of Solution Polymerization up to High Temperatures. Macromolecular<br>Reaction Engineering, 2010, 4, 691-706. | 1.5 | 68        |
| 26 | Determination of Free-Radical Chain-Transfer Rate Coefficients by Pulsed-Laser Polymerization.<br>Macromolecules, 1995, 28, 5655-5663.                                                                                                         | 4.8 | 67        |
| 27 | Propagation Kinetics of Methacrylic Acid Studied by Pulsed-Laser Polymerization. Macromolecules, 1997, 30, 194-197.                                                                                                                            | 4.8 | 63        |
| 28 | Modeling of Chain Length and Long-Chain Branching Distributions in Free-Radical Polymerization.<br>Macromolecular Theory and Simulations, 2001, 10, 144-157.                                                                                   | 1.4 | 63        |
| 29 | Consideration of Macromonomer Reactions in <i>n</i> â€Butyl Acrylate Free Radical Polymerization.<br>Macromolecular Rapid Communications, 2009, 30, 2022-2027.                                                                                 | 3.9 | 62        |
| 30 | Atom-Transfer Radical Batch and Semibatch Polymerization of Styrene. Macromolecular Reaction Engineering, 2007, 1, 425-439.                                                                                                                    | 1.5 | 59        |
| 31 | Continuous Controlled Radical Polymerization of Methyl Acrylate in a Copper Tubular Reactor.<br>Macromolecular Rapid Communications, 2011, 32, 604-609.                                                                                        | 3.9 | 59        |
| 32 | Modeling of Functional Group Distribution in Copolymerization: A Comparison of Deterministic and Stochastic Approaches. Macromolecular Theory and Simulations, 2014, 23, 207-217.                                                              | 1.4 | 58        |
| 33 | Polymerization of olefins through heterogeneous catalysis. VII. Particle ignition and extinction phenomena. Journal of Applied Polymer Science, 1987, 34, 657-676.                                                                             | 2.6 | 57        |
| 34 | High-Temperature Free Radical Copolymerization of Styrene and Butyl Methacrylate with Depropagation and Penultimate Kinetic Effects. Macromolecules, 2006, 39, 4366-4373.                                                                      | 4.8 | 57        |
| 35 | A comprehensive kinetic model for highâ€ŧemperature free radical production of<br>styrene/methacrylate/acrylate resins. AICHE Journal, 2011, 57, 227-238.                                                                                      | 3.6 | 54        |
| 36 | An Investigation of Free-Radical Copolymerization Propagation Kinetics of Styrene and 2-Hydroxyethyl<br>Methacrylate. Macromolecules, 2009, 42, 7736-7744.                                                                                     | 4.8 | 53        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of Methacrylate Free-Radical Depropagation Kinetics by Pulsed-Laser Polymerization.<br>Industrial & Engineering Chemistry Research, 1998, 37, 3567-3574.                                                                               | 3.7 | 51        |
| 38 | Effect of Intramolecular Transfer to Polymer on Stationary Free Radical Polymerization of Alkyl Acrylates, 2. Macromolecular Theory and Simulations, 2006, 15, 128-136.                                                                              | 1.4 | 51        |
| 39 | Termination Kinetics of the Free-Radical Polymerization of Nonionized Methacrylic Acid in Aqueous<br>Solution. Macromolecules, 2008, 41, 3513-3520.                                                                                                  | 4.8 | 50        |
| 40 | PLP/SEC/NMR Study of Free Radical Copolymerization of Styrene and Glycidyl Methacrylate.<br>Macromolecules, 2008, 41, 9011-9018.                                                                                                                     | 4.8 | 50        |
| 41 | PLP-SEC Studies into the Propagation Rate Coefficient of Acrylamide Radical Polymerization in Aqueous Solution. Macromolecules, 2016, 49, 3244-3253.                                                                                                 | 4.8 | 50        |
| 42 | Investigation of Free-Radical Copolymerization Propagation Kinetics of Vinyl Acetate and Methyl<br>Methacrylate. Journal of Physical Chemistry B, 2010, 114, 4213-4222.                                                                              | 2.6 | 49        |
| 43 | Measurement of Free-Radical Propagation Rate Coefficients for Ethyl, Butyl, and Isobutyl<br>Methacrylates by Pulsed-Laser Polymerization. Macromolecules, 1995, 28, 4023-4028.                                                                       | 4.8 | 48        |
| 44 | Modeling Acrylic Acid Radical Polymerization in Aqueous Solution. Macromolecular Reaction Engineering, 2016, 10, 95-107.                                                                                                                             | 1.5 | 48        |
| 45 | Polymerization of olefins through heterogeneous catalysis—V. Gas-liquid mass transfer limitations in<br>liquid slurry reactors. Journal of Applied Polymer Science, 1986, 32, 5451-5479.                                                             | 2.6 | 45        |
| 46 | The Effect of Intramolecular Transfer to Polymer on Stationary Freeâ€Radical Polymerization of Alkyl<br>Acrylates, 3 – Consideration of Solution Polymerization up to High Conversions. Macromolecular<br>Theory and Simulations, 2009, 18, 247-258. | 1.4 | 45        |
| 47 | Solvent Effects on Free-Radical Copolymerization Propagation Kinetics of Styrene and Methacrylates.<br>Macromolecules, 2010, 43, 6311-6320.                                                                                                          | 4.8 | 45        |
| 48 | Freeâ€Radical Propagation Kinetics of <i>N</i> â€Vinyl Formamide in Aqueous Solution Studied by PLP–SEC.<br>Macromolecular Chemistry and Physics, 2010, 211, 580-593.                                                                                | 2.2 | 44        |
| 49 | Continuous Atom Transfer Radical Polymerization with Low Catalyst Concentration in a Tubular Reactor. Macromolecular Reaction Engineering, 2009, 3, 222-231.                                                                                         | 1.5 | 43        |
| 50 | An Inâ€ <b>S</b> itu <scp>NMR</scp> Study of Radical Copolymerization Kinetics of Acrylamide and<br>Nonâ€ <scp>I</scp> onized Acrylic Acid in Aqueous Solution. Macromolecular Symposia, 2013, 333, 122-137.                                         | 0.7 | 42        |
| 51 | Recent Advances in the Study of Highâ€Temperature Free Radical Acrylic Solution Copolymerization.<br>Macromolecular Reaction Engineering, 2008, 2, 199-214.                                                                                          | 1.5 | 40        |
| 52 | Kinetics and Modeling of Free-Radical Batch Polymerization of Nonionized Methacrylic Acid in<br>Aqueous Solution. Industrial & Engineering Chemistry Research, 2008, 47, 8197-8204.                                                                  | 3.7 | 40        |
| 53 | Copper mediated controlled radical polymerization of methyl acrylate in the presence of ascorbic acid in a continuous tubular reactor. Polymer Chemistry, 2012, 3, 1322.                                                                             | 3.9 | 40        |
| 54 | Kinetics and Modeling of Batch and Semibatch Aqueousâ€Phase NVP Freeâ€Radical Polymerization.<br>Macromolecular Reaction Engineering, 2010, 4, 499-509.                                                                                              | 1.5 | 39        |

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An Investigation of Free Radical Copolymerization Kinetics of the Bioâ€renewable Monomer<br><i>γ</i> â€Methylâ€ <i>α</i> â€methyleneâ€ <i>γ</i> â€butyrolactone with Methyl methacrylate and Styrene.<br>Macromolecular Chemistry and Physics, 2010, 211, 501-509.    | 2.2 | 37        |
| 56 | Continuous Atom Transfer Radical Polymerization in a Tubular Reactor. Macromolecular Reaction Engineering, 2008, 2, 31-36.                                                                                                                                            | 1.5 | 36        |
| 57 | Free Radical Copolymerization Kinetics of γ-Methyl-α-methylene-γ-butyrolactone (MeMBL).<br>Biomacromolecules, 2011, 12, 2319-2326.                                                                                                                                    | 5.4 | 36        |
| 58 | Dewatering Oil Sands Tailings with Degradable Polymer Flocculants. ACS Applied Materials &<br>Interfaces, 2017, 9, 36290-36300.                                                                                                                                       | 8.0 | 36        |
| 59 | Modeling of Nitroxide-Mediated Semibatch Radical Polymerization. Macromolecular Reaction Engineering, 2007, 1, 243-252.                                                                                                                                               | 1.5 | 34        |
| 60 | Reducing ATRP Catalyst Concentration in Batch, Semibatch and Continuous Reactors.<br>Macromolecular Reaction Engineering, 2010, 4, 369-380.                                                                                                                           | 1.5 | 34        |
| 61 | Freeâ€Radical Acrylic Polymerization Kinetics at Elevated Temperatures. Chemical Engineering and Technology, 2010, 33, 1745-1753.                                                                                                                                     | 1.5 | 34        |
| 62 | Polymerization of olefins through heterogeneous catalysis. IX. Experimental study of propylene<br>polymerization over a high activity MgCl2-supported Ti catalyst. Journal of Applied Polymer Science,<br>1991, 43, 1271-1285.                                        | 2.6 | 32        |
| 63 | Study of Butyl Methacrylate Depropagation Behavior Using Batch Experiments in Combination with Modeling. Industrial & Engineering Chemistry Research, 2009, 48, 4810-4816.                                                                                            | 3.7 | 32        |
| 64 | A Combined Computational and Experimental Study on the Freeâ€Radical Copolymerization of Styrene and Hydroxyethyl Acrylate. Macromolecular Chemistry and Physics, 2012, 213, 1706-1716.                                                                               | 2.2 | 32        |
| 65 | The Effect of Hydrogen Bonding on Intramolecular Chain Transfer in Polymerization of Acrylates.<br>Macromolecular Rapid Communications, 2011, 32, 1090-1095.                                                                                                          | 3.9 | 31        |
| 66 | Continuous controlled radical polymerization of methyl acrylate with copper wire in a CSTR. Polymer Chemistry, 2012, 3, 486-497.                                                                                                                                      | 3.9 | 30        |
| 67 | Understanding the Controlled Polymerization of Methyl Methacrylate with Low Concentrations of<br>9-(4-Vinylbenzyl)-9 <i>H</i> -carbazole Comonomer by Nitroxide-Mediated Polymerization: The Pivotal<br>Role of Reactivity Ratios. Macromolecules, 2013, 46, 805-813. | 4.8 | 30        |
| 68 | Radical Propagation Kinetics of <i>N</i> â€Vinylpyrrolidone in Organic Solvents Studied by Pulsed‣aser<br>Polymerization–Sizeâ€Exclusion Chromatography (PLP–SEC). Macromolecular Chemistry and Physics,<br>2014, 215, 2327-2336.                                     | 2.2 | 30        |
| 69 | The influence of hydrogen bonding on radical chain-growth parameters for butyl<br>methacrylate/2-hydroxyethyl acrylate solution copolymerization. Polymer Chemistry, 2016, 7,<br>4567-4574.                                                                           | 3.9 | 30        |
| 70 | Reduced Branching in Poly(butyl acrylate) via Solution Radical Polymerization in <i>n</i> -Butanol.<br>Macromolecules, 2011, 44, 5843-5845.                                                                                                                           | 4.8 | 28        |
| 71 | Modeling the Distribution of Functional Groups in Semibatch Radical Copolymerization: An<br>Accelerated Stochastic Approach. Industrial & Engineering Chemistry Research, 2018, 57, 9407-9419.                                                                        | 3.7 | 28        |
| 72 | Controlled synthesis of poly[(butyl methacrylate)â€ <i>co</i> â€(butyl acrylate)] via activator regenerated<br>by electron transfer atom transfer radical polymerization: insights and improvement. Polymer<br>International, 2014, 63, 848-857.                      | 3.1 | 27        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hydrogen bonding in radical solution copolymerization kinetics of acrylates and methacrylates: a comparison of hydroxy- and methoxy-functionality. Polymer Chemistry, 2017, 8, 1943-1952.            | 3.9 | 25        |
| 74 | Solvent Effects on Kinetics of 2-Hydroxyethyl Methacrylate Semibatch Radical Copolymerization.<br>Industrial & Engineering Chemistry Research, 2014, 53, 7296-7304.                                  | 3.7 | 24        |
| 75 | Critically Evaluated Rate Coefficients in Radical Polymerization – 8. Propagation Rate Coefficients for Vinyl Acetate in Bulk. Macromolecular Chemistry and Physics, 2017, 218, 1600357.             | 2.2 | 24        |
| 76 | Modeling of Free-Radical Polymerization Kinetics with Crosslinking for Methyl Methacrylate/Ethylene<br>Glycol Dimethacrylate. Polymer-Plastics Technology and Engineering, 1993, 1, 521-577.         | 0.7 | 23        |
| 77 | Semibatch Atom Transfer Radical Copolymerization of Styrene and Butyl Acrylate. Macromolecular Symposia, 2007, 259, 151-163.                                                                         | 0.7 | 23        |
| 78 | Termination Kinetics of 1â€Vinylpyrrolidinâ€2â€one Radical Polymerization in Aqueous Solution.<br>Macromolecular Chemistry and Physics, 2011, 212, 1400-1409.                                        | 2.2 | 23        |
| 79 | Mathematical modeling of the full molecular weight distribution in ATRP techniques. AICHE Journal, 2016, 62, 2762-2777.                                                                              | 3.6 | 23        |
| 80 | Cationic Hydrolytically Degradable Flocculants with Enhanced Water Recovery for Oil Sands Tailings<br>Remediation. Macromolecular Materials and Engineering, 2016, 301, 1248-1254.                   | 3.6 | 23        |
| 81 | Simulation of Free Radical Highâ€Pressure Copolymerization in a Multizone Autoclave: Model<br>Development and Application. Polymer-Plastics Technology and Engineering, 2003, 11, 989-1015.          | 0.7 | 22        |
| 82 | Penultimate Propagation Kinetics of Butyl Methacrylate, Butyl Acrylate, and Styrene<br>Terpolymerization. Macromolecular Rapid Communications, 2007, 28, 1213-1218.                                  | 3.9 | 22        |
| 83 | High Temperature Semibatch Free Radical Copolymerization of Styrene and Butyl Acrylate.<br>Macromolecular Symposia, 2010, 289, 33-42.                                                                | 0.7 | 22        |
| 84 | Modeling the Radical Batch Homopolymerization of Acrylamide in Aqueous Solution. Macromolecular<br>Reaction Engineering, 2016, 10, 490-501.                                                          | 1.5 | 22        |
| 85 | Update and critical reanalysis of IUPAC benchmark propagation rate coefficient data. Polymer<br>Chemistry, 2022, 13, 1891-1900.                                                                      | 3.9 | 22        |
| 86 | Kinetics and Modeling of Methacrylic Acid Radical Polymerization in Aqueous Solution.<br>Macromolecular Reaction Engineering, 2013, 7, 267-276.                                                      | 1.5 | 21        |
| 87 | Effect of Head-To-Head Addition on Vinyl Acetate Propagation Kinetics in Radical Polymerization.<br>Macromolecules, 2014, 47, 8145-8153.                                                             | 4.8 | 21        |
| 88 | The Combined Influence of Monomer Concentration and Ionization on Acrylamide/Acrylic Acid<br>Composition in Aqueous Solution Radical Batch Copolymerization. Macromolecules, 2016, 49,<br>4746-4756. | 4.8 | 21        |
| 89 | Monomer Structure and Solvent Effects on Copolymer Composition in (Meth)acrylate Radical<br>Copolymerization. Industrial & Engineering Chemistry Research, 2018, 57, 5215-5227.                      | 3.7 | 21        |
| 90 | Design of 2â€hydroxyethyl methacrylateâ€functional macromonomer dispersants by semiâ€batch cobalt<br>chain transfer polymerization. AICHE Journal, 2019, 65, e16723.                                 | 3.6 | 21        |

| #   | Article                                                                                                                                                                                                  | IF               | CITATIONS            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 91  | Freeâ€Radical Polymerization of <i>N</i> â€Vinylimidazole and Quaternized Vinylimidazole in Aqueous Solution. Macromolecular Chemistry and Physics, 2013, 214, 1140-1146.                                | 2.2              | 20                   |
| 92  | Copolymer Composition Deviations from Mayo–Lewis Conventional Free Radical Behavior in Nitroxide<br>Mediated Copolymerization. Macromolecular Theory and Simulations, 2014, 23, 245-265.                 | 1.4              | 20                   |
| 93  | Modeling of Semibatch Solution Radical Copolymerization of Butyl Methacrylate and 2â€Hydroxyethyl<br>Acrylate. Macromolecular Reaction Engineering, 2018, 12, 1800008.                                   | 1.5              | 20                   |
| 94  | Characterization of n -butyl acrylate centered triads in poly( n -butyl acrylate- co -carbon monoxide-) Tj ETQq0 0 0<br>2004, 378, 1414-1427.                                                            | rgBT /Ove<br>3.7 | erlock 10 Tf 5<br>19 |
| 95  | Polymerization reaction engineering: past, present and future. Macromolecular Symposia, 2004, 206, 1-14.                                                                                                 | 0.7              | 19                   |
| 96  | Solvent Effects on Radical Copolymerization Kinetics of 2-Hydroxyethyl Methacrylate and Butyl<br>Methacrylate. Polymers, 2019, 11, 487.                                                                  | 4.5              | 19                   |
| 97  | Polymerization of olefins through heterogeneous catalysis—the effect of condensation cooling on particle ignition. Journal of Applied Polymer Science, 1991, 43, 1387-1390.                              | 2.6              | 18                   |
| 98  | Continuous ARGET ATRP of Methyl Methacrylate and Butyl Acrylate in a Stirred Tank Reactor.<br>Industrial & Engineering Chemistry Research, 2013, 52, 11931-11942.                                        | 3.7              | 18                   |
| 99  | Copolymerization of <i>n</i> â€Butyl Acrylate and Styrene: Terminal vs Penultimate Model.<br>Macromolecular Chemistry and Physics, 2014, 215, 1668-1678.                                                 | 2.2              | 18                   |
| 100 | High Temperature Free Radical Copolymerization with Depropagation and Penultimate Kinetic Effects.<br>Macromolecular Theory and Simulations, 2005, 14, 554-559.                                          | 1.4              | 17                   |
| 101 | Estimation of Free Radical Polymerization Rate Coefficients Using Computational Chemistry.<br>Macromolecular Symposia, 2006, 243, 179-189.                                                               | 0.7              | 17                   |
| 102 | Determination of the Critical Chain Length of Oligomers in Dispersion Polymerization. ACS Macro<br>Letters, 2012, 1, 171-174.                                                                            | 4.8              | 17                   |
| 103 | Superabsorbent hydrogels made from bio-sourced butyrolactone monomer in aqueous solution.<br>Polymer Chemistry, 2017, 8, 6039-6049.                                                                      | 3.9              | 17                   |
| 104 | Structure Modifications of Hydrolytically-Degradable Polymer Flocculant for Improved Water<br>Recovery from Mature Fine Tailings. Industrial & Engineering Chemistry Research, 2018, 57,<br>10809-10822. | 3.7              | 17                   |
| 105 | A Semi-Batch Process for Nitroxide Mediated Radical Polymerization. Macromolecular Materials and Engineering, 2005, 290, 230-241.                                                                        | 3.6              | 16                   |
| 106 | The production of high polymer to surfactant microlatexes. Journal of Polymer Science Part A, 2010,<br>48, 48-54.                                                                                        | 2.3              | 16                   |
| 107 | High Temperature Semibatch Free Radical Copolymerization of Butyl Methacrylate and Styrene.<br>Macromolecular Symposia, 2006, 243, 24-34.                                                                | 0.7              | 15                   |
| 108 | "Living―Radical Polymerization in Tubular Reactors, 2 – Process Optimization for Tailorâ€Made<br>Molecular Weight Distributions. Macromolecular Reaction Engineering, 2008, 2, 414-421.                  | 1.5              | 15                   |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Polymerization Kinetics of Waterâ€Soluble <i>N</i> â€Vinyl Monomers in Aqueous and Organic Solution.<br>Macromolecular Symposia, 2011, 302, 216-223.                                                               | 0.7  | 15        |
| 110 | Pulsed-laser and quantum mechanics study of n-butyl cyanoacrylate and methyl methacrylate free-radical copolymerization. Polymer Chemistry, 2015, 6, 1594-1603.                                                    | 3.9  | 15        |
| 111 | Extractable content of functional acrylic resins produced by radical copolymerization: A comparison of experiment and stochastic simulation. Chemical Engineering Journal, 2019, 378, 122087.                      | 12.7 | 15        |
| 112 | Detection of PLP Structure for Accurate Determination of Propagation Rate Coefficients over an Enhanced Range of PLP-SEC Conditions. Macromolecules, 2019, 52, 55-71.                                              | 4.8  | 14        |
| 113 | A Study of Particle Nucleation in Dispersion Copolymerization of Methyl Methacrylate.<br>Macromolecular Reaction Engineering, 2011, 5, 404-417.                                                                    | 1.5  | 13        |
| 114 | A 3D Simulation Investigation of the Influence of Temperature Increases on the Accuracy of<br>Propagation Rate Coefficients Determined by Pulsed-Laser Polymerization. Macromolecules, 2016, 49,<br>9320-9335.     | 4.8  | 13        |
| 115 | Synthesis and Utilization of Low Dispersity Acrylic Macromonomer as Dispersant for Nonaqueous Dispersion Polymerization. Macromolecules, 2018, 51, 6267-6275.                                                      | 4.8  | 13        |
| 116 | Effect of Intramolecular Transfer to Polymer on Stationary Free Radical Polymerization of Alkyl<br>Acrylates, 4 ―Consideration of Penultimate Effect. Macromolecular Rapid Communications, 2009, 30,<br>1981-1988. | 3.9  | 12        |
| 117 | Nitroxide-Mediated Polymerization at Elevated Temperatures. ACS Macro Letters, 2015, 4, 280-283.                                                                                                                   | 4.8  | 12        |
| 118 | Polyester Macromonomer Syntheses and Radical Copolymerization Kinetics with Styrene.<br>Macromolecules, 2017, 50, 784-795.                                                                                         | 4.8  | 12        |
| 119 | Polylactic acid macromonomer radical propagation kinetics and degradation behaviour. Reaction Chemistry and Engineering, 2017, 2, 487-497.                                                                         | 3.7  | 12        |
| 120 | A comparison of the solution radical propagation kinetics of partially water-miscible non-functional acrylates to acrylic acid. Polymer Chemistry, 2020, 11, 7104-7114.                                            | 3.9  | 12        |
| 121 | Deterministic Approach to Estimate Functionality of Chains Produced by Radical Copolymerization in the Presence of Secondary Reactions. Macromolecules, 2020, 53, 5674-5686.                                       | 4.8  | 12        |
| 122 | Maximizing macromonomer content produced by starved-feed high temperature acrylate/methacrylate semi-batch polymerization. Polymer Chemistry, 2020, 11, 2137-2146.                                                 | 3.9  | 12        |
| 123 | Simulation of free radical high-pressure copolymerization in a multi-zone autoclave reactor:<br>compartment model investigation. Macromolecular Symposia, 2004, 206, 443-456.                                      | 0.7  | 11        |
| 124 | Determination of the Mode of Free Radical Termination from Pulsed Laser Polymerization Experiments.<br>Macromolecular Theory and Simulations, 2007, 16, 29-42.                                                     | 1.4  | 11        |
| 125 | Investigation of Catalytic Chain Transfer Copolymerization of Methacrylates. Macromolecular<br>Reaction Engineering, 2008, 2, 422-435.                                                                             | 1.5  | 11        |
| 126 | High Temperature Semibatch Free Radical Copolymerization of Dodecyl Methacrylate and Styrene.<br>Macromolecular Symposia, 2008, 261, 64-73.                                                                        | 0.7  | 11        |

| #   | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Aqueous copper(0) mediated reversible deactivation radical polymerization of 2-hydroxyethyl acrylate. Polymer Chemistry, 2015, 6, 6509-6518.                                                                                                                                      | 3.9  | 11        |
| 128 | Investigating the Effectiveness of Reactive Dispersants in Nonâ€Aqueous Dispersion Polymerization.<br>Macromolecular Reaction Engineering, 2016, 10, 71-81.                                                                                                                       | 1.5  | 11        |
| 129 | NMP of styrene in batch and CSTR at elevated temperatures: Modeling experimental trends. European<br>Polymer Journal, 2016, 80, 186-199.                                                                                                                                          | 5.4  | 11        |
| 130 | Experimental and Modeling Investigation of Radical Homopolymerization of 2â€(Methacryloyloxyethyl)<br>Trimethylammonium Chloride in Aqueous Solution. Macromolecular Reaction Engineering, 2020, 14,<br>1900033.                                                                  | 1.5  | 11        |
| 131 | Solvent Effects in Semibatch Free Radical Copolymerization of 2â€Hydroxyethyl methacrylate and Styrene at High Temperatures. Macromolecular Symposia, 2013, 325-326, 203-212.                                                                                                     | 0.7  | 10        |
| 132 | A Methyl Methacrylate– <scp>HEMA</scp> â€ <scp>CL</scp> <sub><i>n</i></sub> Copolymerization<br>Investigation: From Kinetics to Bioapplications. Macromolecular Bioscience, 2013, 13, 1347-1357.                                                                                  | 4.1  | 10        |
| 133 | The Effect of Hydrogen Bonding on Radical Semi-Batch Copolymerization of Butyl Acrylate and 2-Hydroxyethyl Acrylate. Polymers, 2017, 9, 368.                                                                                                                                      | 4.5  | 10        |
| 134 | Stochastic Modeling of Poly(acrylate) Distributions Obtained by Radical Polymerization under<br>Highâ€Temperature Semiâ€Batch Starvedâ€Feed Conditions: Investigation of Model Predictions versus<br>Experimental Data. Macromolecular Theory and Simulations, 2021, 30, 2000093. | 1.4  | 10        |
| 135 | An automated recipe generator for semi-batch solution radical copolymerization via comprehensive stochastic modeling and derivative-free algorithms. Chemical Engineering Journal, 2021, 417, 127920.                                                                             | 12.7 | 10        |
| 136 | Aqueousâ€Phase Copolymerization of <i>N</i> â€Vinylpyrrolidone and <i>N</i> â€Vinylformamide.<br>Macromolecular Chemistry and Physics, 2012, 213, 1330-1338.                                                                                                                      | 2.2  | 9         |
| 137 | Propagation Kinetics of Isoprene–Glycidyl Methacrylate Copolymerizations Investigated via PLP–SEC.<br>Macromolecular Rapid Communications, 2017, 38, 1700105.                                                                                                                     | 3.9  | 9         |
| 138 | Pulsed laser studies of cationic reactive surfactant radical propagation kinetics. Polymer, 2017, 130, 39-49.                                                                                                                                                                     | 3.8  | 9         |
| 139 | Low Conversion 4-Acetoxystyrene Free-Radical Polymerization Kinetics Determined by Pulsed-Laser and Thermal Polymerization. Macromolecular Chemistry and Physics, 2006, 207, 1429-1438.                                                                                           | 2.2  | 8         |
| 140 | A Novel Approach for Investigation of Chain Transfer Events by Pulsed Laser Polymerization.<br>Macromolecular Chemistry and Physics, 2011, 212, 699-707.                                                                                                                          | 2.2  | 8         |
| 141 | Vinyl pivalate Propagation Kinetics in Radical Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 51-58.                                                                                                                                                            | 2.2  | 8         |
| 142 | The influence of adding functionality to dispersant and particle core compositions in non-aqueous dispersion polymerization. Reactive and Functional Polymers, 2017, 114, 31-37.                                                                                                  | 4.1  | 8         |
| 143 | Experimental and Modeling Investigations of Aqueous-Phase Radical Copolymerization of<br>2-(Methacryloyloxyethyl)trimethylammonium Chloride with Acrylic Acid. Industrial & Engineering<br>Chemistry Research, 2020, 59, 3359-3374.                                               | 3.7  | 8         |
| 144 | Evaluation of a Novel Polymeric Flocculant for Enhanced Water Recovery of Mature Fine Tailings.<br>Processes, 2020, 8, 735.                                                                                                                                                       | 2.8  | 8         |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Evidence of Scission Products from Peroxide-Initiated Higher Temperature Polymerization of Alkyl<br>Methacrylates. Macromolecules, 2009, 42, 4910-4913.                                                                | 4.8  | 7         |
| 146 | The effect of cosurfactants and the initiator concentration on the polymer to surfactant concentration in nanolatexes. Journal of Polymer Science Part A, 2012, 50, 944-956.                                           | 2.3  | 7         |
| 147 | ARGET ATRP of BMA and BA: Exploring Limitations at Low Copper Levels. ACS Symposium Series, 2012, , 183-202.                                                                                                           | 0.5  | 7         |
| 148 | Determination of Mark-Houwink Parameters and Absolute Molecular Weight of Medium-Chain-Length<br>Poly(3-Hydroxyalkanoates). Journal of Polymers and the Environment, 2013, 21, 24-29.                                  | 5.0  | 7         |
| 149 | A machine-readable online database for rate coefficients in radical polymerization. Polymer Chemistry, 2021, 12, 3688-3692.                                                                                            | 3.9  | 7         |
| 150 | Measurement and Modeling of Methyl Acrylate Radical Polymerization in Polar and Nonpolar<br>Solvents. Industrial & Engineering Chemistry Research, 2022, 61, 6398-6413.                                                | 3.7  | 7         |
| 151 | Investigating the impact of operating parameters on molecular weight distributions using functional regression. Macromolecular Symposia, 2004, 206, 495-508.                                                           | 0.7  | 6         |
| 152 | Development of on-line optimization-based control strategies for a starved-feed semibatch copolymerization reactor. Control Engineering Practice, 2010, 18, 131-139.                                                   | 5.5  | 6         |
| 153 | Kinetics and Modeling of Aqueous Phase Radical Homopolymerization of<br>3-(Methacryloylaminopropyl)trimethylammonium Chloride and its Copolymerization with Acrylic Acid.<br>Processes, 2020, 8, 1352.                 | 2.8  | 6         |
| 154 | Measuring and modelling the peculiarities of aqueousâ€ <del>p</del> hase radical polymerization. Canadian Journal of Chemical Engineering, 2016, 94, 2045-2051.                                                        | 1.7  | 5         |
| 155 | Kinetic importance of the missing step in dithiobenzoate-mediated RAFT polymerizations of acrylates.<br>Chemical Engineering Journal, 2021, 415, 128970.                                                               | 12.7 | 5         |
| 156 | Determination of the Mode of Radical Termination from Pulsed Laser Polymerization Experiments in the Presence of Retardation and Chain Transfer to Agent. Macromolecular Chemistry and Physics, 2013, 214, 2670-2682.  | 2.2  | 4         |
| 157 | Design of Acrylic Dispersants for Nonaqueous Dispersion Polymerization: The Importance of Thermodynamics. Macromolecular Reaction Engineering, 2018, 12, 1800025.                                                      | 1.5  | 4         |
| 158 | Critically evaluated propagation rate coefficients for radical polymerizations: acrylates and vinyl acetate in bulk (IUPAC Technical Report). Pure and Applied Chemistry, 2019, 91, 1883-1888.                         | 1.9  | 4         |
| 159 | Modeling the Synthesis of Butyl Methacrylate Macromonomer by Sequential ATRP CCTP.<br>Macromolecular Reaction Engineering, 2019, 13, 1800062.                                                                          | 1.5  | 4         |
| 160 | Effect of Ionization on Aqueous Phase Radical Copolymerization of Acrylic Acid and Cationic<br>Monomers. Industrial & Engineering Chemistry Research, 2021, 60, 10511-10521.                                           | 3.7  | 4         |
| 161 | The effect of hydrogen bonding on the copolymerization kinetics of 2â€methoxyethyl acrylate with<br>2â€hydroxyethyl methacrylate in alcohol and aqueous solutions. Canadian Journal of Chemical<br>Engineering, 0, , . | 1.7  | 4         |
| 162 | Radical copolymerization kinetics of <i>N-tert</i> -butyl acrylamide and methyl acrylate in polar media.<br>Polymer Chemistry, 2022, 13, 2036-2047.                                                                    | 3.9  | 4         |

| #   | Article                                                                                                                                                                                                                  | IF                | CITATIONS      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 163 | An efficient process for the Cu(0)-mediated synthesis and subsequent chain extension of poly(methyl) Tj ETQq1 1                                                                                                          | 0.784314<br>3.7   | l ggBT /Ove    |
| 164 | Exploiting Addition–Fragmentation Reactions to Produce Low Dispersity Poly(isobornyl acrylate) and<br>Blocky Copolymers by Semibatch Radical Polymerization. Macromolecular Rapid Communications,<br>2020, 41, e2000288. | 3.9               | 3              |
| 165 | Characterization of degradation products from a hydrolytically degradable cationic flocculant.<br>Polymer Degradation and Stability, 2020, 174, 109097.                                                                  | 5.8               | 3              |
| 166 | The influences of monomer structure and solvent on the radical copolymerization of tertiary amine and PEGylated methacrylates. Polymer Chemistry, 2021, 12, 5289-5302.                                                   | 3.9               | 3              |
| 167 | PLP-SEC Investigation of the Influence of Electrostatic Interactions on the Radical Propagation Rate Coefficients of Cationic Monomers TMAEMC and MAPTAC. Macromolecules, 2021, 54, 3204-3222.                           | 4.8               | 3              |
| 168 | Quantitative analyses to estimate the bioaccessibility of a hydrolytically degradable cationic flocculant. Heliyon, 2021, 7, e08500.                                                                                     | 3.2               | 3              |
| 169 | Chain-length dependence of the propagation rate coefficient for methyl acrylate polymerization at 25<br>°C investigated by the PLP-SEC method. Polymer Chemistry, 2022, 13, 3053-3062.                                   | 3.9               | 3              |
| 170 | Nitroxide-Mediated Semibatch Polymerization for the Production of Low-Molecular Weight<br>Solvent-Borne Coating Resins. ACS Symposium Series, 2003, , 466-480.                                                           | 0.5               | 2              |
| 171 | Smallâ€Particle Highâ€5olidâ€Content Bimodal Latexes: Highly Crosslinked Small Particles as Pseudoâ€Inert<br>Nanofillers. Macromolecular Reaction Engineering, 2013, 7, 36-53.                                           | 1.5               | 2              |
| 172 | Radical Copolymerization Kinetics of Bio-Renewable Butyrolactone Monomer in Aqueous Solution.<br>Processes, 2017, 5, 55.                                                                                                 | 2.8               | 2              |
| 173 | The contributions of <scp>Prof. Kenneth F. O'Driscoll</scp> to radical copolymerization kinetics.<br>Canadian Journal of Chemical Engineering, 2022, 100, 680-688.                                                       | 1.7               | 2              |
| 174 | Measurement and Modeling of <i>Nâ€ŧert</i> â€butyl Acrylamide Radical Homo―and Copolymerization with<br>Methyl Acrylate in Ethanol/Water. Macromolecular Reaction Engineering, 0, , 2200026.                             | 1.5               | 2              |
| 175 | Toward an Efficient Process for the Cu(0)â€Mediated Synthesis and Chain Extension of Poly(methyl) Tj ETQq1 1 C<br>2100120.                                                                                               | ).784314 r<br>2.2 | gBT /Over<br>1 |
| 176 | Methacrylate and Styrene Block Copolymer Synthesis by Cuâ€Mediated Chain Extension of Acrylate<br>Macroinitiator in a Semibatch Reactor. Macromolecular Reaction Engineering, 0, , 2100043.                              | 1.5               | 1              |
| 177 | Macromol. React. Eng. 5–6/2009. Macromolecular Reaction Engineering, 2009, 3, .                                                                                                                                          | 1.5               | 0              |
| 178 | An Efficient Monte Carlo Representation of Semiâ€Batch Starvedâ€Feed Acrylateâ€Methacrylate<br>Multicomponent Radical Polymerization. Macromolecular Reaction Engineering, 2021, 15, 2100030.                            | 1.5               | 0              |