Baoxiu Mi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2501858/publications.pdf

Version: 2024-02-01

		516710	610901
35	654	16	24
papers	citations	h-index	g-index
35	35	35	1034
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Room-temperature preparation of TiO2/graphene composite photoanodes for efficient dye-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 586, 326-334.	9.4	14
2	Toward all aerosol printing of high-efficiency organic solar cells using environmentally friendly solvents in ambient air. Journal of Materials Chemistry A, 2021, 9, 17198-17210.	10.3	16
3	Enhancing emission property of red phosphor Sr2MgGe2O7:Mn4+ via Ba2+ doping. Journal of Materials Science: Materials in Electronics, 2021, 32, 19832-19845.	2.2	3
4	Carbazol-phenyl-phenothiazine-based sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 26311-26322.	10.3	6
5	Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes. ACS Applied Materials & Distribution (1988). Materials & Distribution (1988). ACS Applied (1988). The Control of the Control of Contr	8.0	9
6	Lowâ€Cost and Extraâ€Simple Preparation of Porous NiS ₂ Counter Electrode for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900724.	1.8	9
7	Role of Modifying Photoanodes by Organic Titanium on Charge Collection Efficiency Enhancement in Dyeâ€Sensitized Solar Cells. Advanced Engineering Materials, 2020, 22, 1901071.	3.5	8
8	Fabrication of Cr-doped SrTiO3/Ti-doped \hat{l}_{\pm} -Fe2O3 photoanodes with enhanced photoelectrochemical properties. Journal of Materials Science and Technology, 2020, 56, 189-195.	10.7	23
9	Position engineering of cyanoacrylic-acid anchoring group in a dye for DSSC applications. Dyes and Pigments, 2020, 180, 108470.	3.7	18
10	Controlling Electrode Spacing by Polystyrene Microsphere Spacers for Highly Stable and Flexible Transparent Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5885-5891.	8.0	13
11	Electrospray preparation of CulnS2 films as efficient counter electrode for dye-sensitized solar cells. Chemical Engineering Journal, 2020, 397, 125463.	12.7	31
12	Efficient Non-Fullerene Organic Photovoltaics Printed by Electrospray via Solvent Engineering. ACS Applied Materials & Solvent Engineering & Solvent	8.0	20
13	Morphology and electrical characteristics of polymer: Fullerene films deposited by electrospray. Solar Energy Materials and Solar Cells, 2018, 183, 137-145.	6.2	11
14	Mechanism Investigation of the Postnecking Treatment to WO ₃ Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 4670-4677.	5.1	14
15	Effects of meta or para connected organic dyes for dye-sensitized solar cell. Dyes and Pigments, 2018, 158, 165-174.	3.7	40
16	Interfacial engineering of graphene for highly efficient blue and white organic light-emitting devices. Scientific Reports, 2018, 8, 8155.	3.3	13
17	In situ preparation of hierarchically structured dual-layer TiO2 films by E-spray method for efficient dye-sensitized solar cells. Organic Electronics, 2017, 49, 135-141.	2.6	15
18	Structure–Property Study on Two New D–A Type Materials Comprising Pyridazine Moiety and the OLED Application as Host. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26242-26251.	8.0	29

#	Article	IF	Citations
19	Pure aromatic hydrocarbons with meta-linked phenyl-core and perihedral fluorene substitutions with/without inert groups of tert-butyl: bipolar hosts for blue phosphorescence. Science China Chemistry, 2017, 60, 223-230.	8.2	6
20	A Bipolar and Small Singletâ€∓riplet Splitting Energy Host with Triplet Energy Lower Than a Blue Phosphor for Phosphorescent OLEDs in Panchromatic Range. Chinese Journal of Chemistry, 2016, 34, 763-770.	4.9	5
21	Copper Mesh Templated by Breath-Figure Polymer Films as Flexible Transparent Electrodes for Organic Photovoltaic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11122-11127.	8.0	64
22	New iridium complexes bearing C^N=N ligand for high efficiency OLEDs. Journal of Luminescence, 2016, 180, 51-57.	3.1	17
23	Labelâ€Free DNA Sensors Based on Fieldâ€Effect Transistors with Semiconductor of Carbon Materials. Chinese Journal of Chemistry, 2015, 33, 828-841.	4.9	6
24	Pure aromatic hydrocarbons with rigid and bulky substituents as bipolar hosts for blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 9137-9144.	5 . 5	24
25	Order-enhanced silver nanowire networks fabricated by two-step dip-coating as polymer solar cell electrodes. RSC Advances, 2015, 5, 100725-100729.	3.6	22
26	Influences of fluorination on homoleptic iridium complexes with Câ^§N=N type ligand to material properties, ligand orientation and OLED performances. Science China Chemistry, 2015, 58, 640-649.	8.2	16
27	Convenient and inexpensive determination of optical constants and film thickness of blended organic thin film. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-7.	5.1	2
28	Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Materials and Solar Cells, 2014, 121, 119-125.	6.2	49
29	Heat revolution on photophysical properties and electroluminescent performance of Ir(ppy)3-doped bipolar host of oxadiazole derivatives attaching with inert group of tert-butyl moiety. Science China Chemistry, 2014, 57, 849-856.	8.2	16
30	Universal Strategy for Cheap and Colorâ€Stable Singleâ€EML WOLEDs Utilizing Two Complementaryâ€Color Nondoped Emitters without Energy Transfer. Advanced Optical Materials, 2014, 2, 938-944.	7.3	21
31	Electrospray Dense Suspensions of TiO ₂ Nanoparticles for Dye Sensitized Solar Cells. Aerosol Science and Technology, 2013, 47, 1302-1309.	3.1	23
32	A thermal stable cathode buffer based on an inexpensive tetranuclear zinc(II) complex for organic photovoltaic devices. Science China Chemistry, 2012, 55, 2562-2566.	8.2	2
33	Organic thin-film solar cells: Devices and materials. Science China Chemistry, 2012, 55, 553-578.	8.2	22
34	Recent progress in the numerical modeling for organic thin film solar cells. Science China: Physics, Mechanics and Astronomy, 2011, 54, 375-387.	5.1	31
35	Molecular hosts for triplet emitters in organic light-emitting diodes and the corresponding working principle. Science China Chemistry, 2010, 53, 1679-1694.	8.2	36