
David G Streets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2501448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 2004, 109, .	3.3	1,941
2	Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science, 2012, 335, 183-189.	6.0	1,107
3	MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 2017, 17, 935-963.	1.9	1,069
4	Transboundary health impacts of transported global air pollution and international trade. Nature, 2017, 543, 705-709.	13.7	737
5	Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	1.9	689
6	Anthropogenic mercury emissions in China. Atmospheric Environment, 2005, 39, 7789-7806.	1.9	599
7	Aura OMI observations of regional SO ₂ and NO ₂ pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics, 2016, 16, 4605-4629.	1.9	521
8	Black carbon emissions in China. Atmospheric Environment, 2001, 35, 4281-4296.	1.9	478
9	Air quality during the 2008 Beijing Olympic Games. Atmospheric Environment, 2007, 41, 480-492.	1.9	464
10	All-Time Releases of Mercury to the Atmosphere from Human Activities. Environmental Science & Technology, 2011, 45, 10485-10491.	4.6	434
11	NO _x emission trends for China, 1995–2004: The view from the ground and the view from space. Journal of Geophysical Research, 2007, 112, .	3.3	422
12	Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003. Environmental Science & Technology, 2006, 40, 5312-5318.	4.6	406
13	China's international trade and air pollution in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1736-1741.	3.3	391
14	Legacy impacts of allâ€time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles, 2013, 27, 410-421.	1.9	377
15	Projections of Global Mercury Emissions in 2050. Environmental Science & Technology, 2009, 43, 2983-2988.	4.6	344
16	Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 2013, 77, 1011-1042.	1.9	323
17	A spaceâ€based, highâ€resolution view of notable changes in urban NO _x pollution around the world (2005–2014). Journal of Geophysical Research D: Atmospheres, 2016, 121, 976-996.	1.2	322
18	Total Mercury Released to the Environment by Human Activities. Environmental Science & Technology, 2017, 51, 5969-5977.	4.6	304

#	Article	IF	CITATIONS
19	Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment, 2008, 42, 2023-2036.	1.9	280
20	Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations. Journal of Geophysical Research, 2006, 111, .	3.3	276
21	Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophysical Research Letters, 2006, 33, .	1.5	265
22	The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.	1.9	259
23	India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide. Scientific Reports, 2017, 7, 14304.	1.6	230
24	Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmospheric Environment, 1999, 33, 633-646.	1.9	229
25	Historical Mercury Releases from Commercial Products: Global Environmental Implications. Environmental Science & Technology, 2014, 48, 10242-10250.	4.6	227
26	Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation Potential in the Pearl River Delta, China. Environmental Science & Technology, 2009, 43, 8580-8586.	4.6	224
27	Linking ozone pollution and climate change: The case for controlling methane. Geophysical Research Letters, 2002, 29, 25-1-25-4.	1.5	220
28	Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 2018, 1, 59-68.	11.5	215
29	Global impacts of aerosols from particular source regions and sectors. Journal of Geophysical Research, 2007, 112, .	3.3	209
30	Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring. Atmospheric Environment, 2011, 45, 7301-7318.	1.9	206
31	Anthropogenic emissions of non-methane volatile organic compounds in China. Atmospheric Environment, 2002, 36, 1309-1322.	1.9	203
32	Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. Journal of Geophysical Research, 2009, 114, .	3.3	200
33	Effects of 2000–2050 global change on ozone air quality in the United States. Journal of Geophysical Research, 2008, 113, .	3.3	186
34	Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 2014, 94, 647-662.	1.9	186
35	Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific. Journal of Geophysical Research, 2003, 108, .	3.3	178
36	Understanding of regional air pollution over China using CMAQ, part II. Process analysis and sensitivity of ozone and particulate matter to precursor emissions. Atmospheric Environment, 2010, 44, 3719-3727.	1.9	173

#	Article	IF	CITATIONS
37	Environmental Implication of Electric Vehicles in China. Environmental Science & Technology, 2010, 44, 4856-4861.	4.6	171
38	Sulfur dioxide emissions in Asia in the period 1985–1997. Atmospheric Environment, 2000, 34, 4413-4424.	1.9	167
39	Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment. Environmental Science & Technology, 2014, 48, 13060-13068.	4.6	164
40	U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmospheric Environment, 2015, 110, 130-143.	1.9	162
41	Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation. Atmospheric Environment, 2010, 44, 2415-2426.	1.9	156
42	Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions. Environmental Science & Technology, 2015, 49, 4868-4877.	4.6	156
43	Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmospheric Environment, 2019, 201, 417-427.	1.9	154
44	Aerosol trends over China, 1980–2000. Atmospheric Research, 2008, 88, 174-182.	1.8	153
45	Asian Aerosols: Current and Year 2030 Distributions and Implications to Human Health and Regional Climate Change. Environmental Science & Technology, 2009, 43, 5811-5817.	4.6	152
46	Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument. Geophysical Research Letters, 2010, 37, .	1.5	147
47	Disentangling the Impact of the COVIDâ€19 Lockdowns on Urban NO ₂ From Natural Variability. Geophysical Research Letters, 2020, 47, e2020GL089269.	1.5	144
48	Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns. Journal of Geophysical Research, 2009, 114, .	3.3	143
49	Source Forensics of Black Carbon Aerosols from China. Environmental Science & Technology, 2013, 47, 9102-9108.	4.6	143
50	Global Source–Receptor Relationships for Mercury Deposition Under Present-Day and 2050 Emissions Scenarios. Environmental Science & Technology, 2011, 45, 10477-10484.	4.6	140
51	Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia. Atmospheric Environment, 1997, 31, 1553-1572.	1.9	137
52	Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow. Journal of Geophysical Research, 2004, 109, .	3.3	131
53	Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan. Scientific Reports, 2016, 6, 35912.	1.6	126
54	Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policyâ€relevant background surface ozone in the United States. Journal of Geophysical Research, 2008, 113, .	3.3	118

#	Article	IF	CITATIONS
55	Mercury Stable Isotope Signatures of World Coal Deposits and Historical Coal Combustion Emissions. Environmental Science & Technology, 2014, 48, 7660-7668.	4.6	118
56	Increase in NO _{<i>x</i>} Emissions from Indian Thermal Power Plants during 1996–2010: Unit-Based Inventories and Multisatellite Observations. Environmental Science & Technology, 2012, 46, 7463-7470.	4.6	117
57	A novel backâ€trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010. Geophysical Research Letters, 2012, 39, .	1.5	117
58	Impacts of dust on regional tropospheric chemistry during the ACE-Asia experiment: A model study with observations. Journal of Geophysical Research, 2004, 109, .	3.3	116
59	Major components of China's anthropogenic primary particulate emissions. Environmental Research Letters, 2007, 2, 045027.	2.2	115
60	Ozone Monitoring Instrument Observations of Interannual Increases in SO ₂ Emissions from Indian Coal-Fired Power Plants during 2005–2012. Environmental Science & Technology, 2013, 47, 13993-14000.	4.6	113
61	Characterization and Source Apportionment of Particulate Matter â‰⊄.5 μm in Sumatra, Indonesia, during a Recent Peat Fire Episode. Environmental Science & Technology, 2007, 41, 3488-3494.	4.6	109
62	Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals. Atmospheric Environment, 2015, 116, 1-11.	1.9	108
63	Global biofuel use, 1850-2000. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	1.9	105
64	Changing Trends in Sulfur Emissions in Asia:Â Implications for Acid Deposition, Air Pollution, and Climate. Environmental Science & Technology, 2002, 36, 4707-4713.	4.6	103
65	Enhanced Capabilities of TROPOMI NO ₂ : Estimating NO _{<i>X</i>} from North American Cities and Power Plants. Environmental Science & Technology, 2019, 53, 12594-12601.	4.6	103
66	The growing contribution of sulfur emissions from ships in Asian waters, 1988–1995. Atmospheric Environment, 2000, 34, 4425-4439.	1.9	102
67	Influence of future anthropogenic emissions on climate, natural emissions, and air quality. Journal of Geophysical Research, 2009, 114, .	3.3	102
68	The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005–2011. Atmospheric Environment, 2013, 81, 102-111.	1.9	99
69	Seasonal variability of NOxemissions over east China constrained by satellite observations: Implications for combustion and microbial sources. Journal of Geophysical Research, 2007, 112, .	3.3	97
70	A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmospheric Environment, 2005, 39, 5917-5933.	1.9	95
71	Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions. Journal of Geophysical Research, 2007, 112, .	3.3	94
72	Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles. Atmospheric Environment, 2011, 45, 4830-4844.	1.9	93

#	Article	lF	CITATIONS
73	BIOFUEL USE IN ASIA AND ACIDIFYING EMISSIONS1The above manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonneâ€) under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy.1. Energy, 1998, 23, 1029-1042.	4.5	92
74	Biomass Burning Contributions to Ambient VOCs Species at a Receptor Site in the Pearl River Delta (PRD), China. Environmental Science & Technology, 2010, 44, 4577-4582.	4.6	92
75	Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study. Energy Policy, 2006, 34, 754-762.	4.2	91
76	Cross influences of ozone and sulfate precursor emissions changes on air quality and climate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4377-4380.	3.3	91
77	Surface ozone background in the United States: Canadian and Mexican pollution influences. Atmospheric Environment, 2009, 43, 1310-1319.	1.9	90
78	Historical releases of mercury to air, land, and water from coal combustion. Science of the Total Environment, 2018, 615, 131-140.	3.9	90
79	Model estimate of mercury emission from natural sources in East Asia. Atmospheric Environment, 2008, 42, 8674-8685.	1.9	89
80	Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features. Environmental Pollution, 2011, 159, 2954-2960.	3.7	88
81	Trends in Emissions of Acidifying Species in Asia, 1985–1997. Water, Air, and Soil Pollution, 2001, 130, 187-192.	1.1	85
82	Impacts of Asian megacity emissions on regional air quality during spring 2001. Journal of Geophysical Research, 2005, 110, .	3.3	85
83	Multiâ€decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface seawater concentrations. Geophysical Research Letters, 2012, 39, .	1.5	85
84	Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia. Environmental Science & amp; Technology, 2015, 49, 5326-5335.	4.6	84
85	Modeling Study of Air Pollution Due to the Manufacture of Export Goods in China's Pearl River Delta. Environmental Science & Technology, 2006, 40, 2099-2107.	4.6	83
86	Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models. Journal of Geophysical Research, 2007, 112, .	3.3	82
87	Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment. Atmospheric Environment, 2010, 44, 3449-3457.	1.9	82
88	Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics. Atmospheric Environment, 2011, 45, 1786-1798.	1.9	81
89	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004, 109, .	3.3	80
90	Five hundred years of anthropogenic mercury: spatial and temporal release profiles*. Environmental Research Letters, 2019, 14, 084004.	2.2	80

#	Article	IF	CITATIONS
91	Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns: 1. Ground-based observations at Cheeka Peak. Journal of Geophysical Research, 2001, 106, 7449-7461.	3.3	79
92	Global climate forcing of aerosols embodied in international trade. Nature Geoscience, 2016, 9, 790-794.	5.4	79
93	An intercomparison and evaluation of aircraft-derived and simulated CO from seven chemical transport models during the TRACE-P experiment. Journal of Geophysical Research, 2003, 108, .	3.3	78
94	Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	77
95	Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures. Journal of Geophysical Research, 2006, 111, .	3.3	75
96	Model evaluation of methods for estimating surface emissions and chemical lifetimes from satellite data. Atmospheric Environment, 2014, 98, 66-77.	1.9	75
97	Six centuries of changing oceanic mercury. Global Biogeochemical Cycles, 2014, 28, 1251-1261.	1.9	75
98	Photoelectron spectra of inner valence shells. Part 1.—Saturated hydrocarbons. Journal of the Chemical Society, Faraday Transactions 2, 1974, 70, 875-884.	1.1	74
99	Greenhouse-gas emissions from biofuel combustion in Asia1This work was carried out at Argonne National Laboratory, managed by the University of Chicago for the U.S. Department of Energy under Contract No. W-31-109-ENG-38.1. Energy, 1999, 24, 841-855.	4.5	73
100	Gaseous and particulate emissions from rural vehicles in China. Atmospheric Environment, 2011, 45, 3055-3061.	1.9	73
101	Revealing important nocturnal and dayâ€toâ€day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.	1.5	73
102	High-Resolution Vehicular Emission Inventory Using a Link-Based Method: A Case Study of Light-Duty Vehicles in Beijing. Environmental Science & Technology, 2009, 43, 2394-2399.	4.6	72
103	Aerosol climate effects and air quality impacts from 1980 to 2030. Environmental Research Letters, 2008, 3, 024004.	2.2	71
104	Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment. Journal of Geophysical Research, 2003, 108, .	3.3	68
105	A top-down assessment using OMI NO ₂ suggests an underestimate in the NO _{<i>x</i>} emissions inventory in Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2019. 19. 1801-1818.	1.9	68
106	Using CO2:CO correlations to improve inverse analyses of carbon fluxes. Journal of Geophysical Research, 2006, 111, .	3.3	67
107	An Emission Inventory of Marine Vessels in Shanghai in 2003. Environmental Science & Technology, 2007, 41, 5183-5190.	4.6	67
108	TROPOMI NO ₂ in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation With Surface NO ₂ Concentrations. Earth's Future, 2021, 9, e2020EF001665.	2.4	66

#	Article	IF	CITATIONS
109	Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model. Journal of Geophysical Research, 2003, 108, .	3.3	65
110	Historical (1850–2010) mercury stable isotope inventory from anthropogenic sources to the atmosphere. Elementa, 2016, 4, .	1.1	64
111	Long-range transport of acidifying substances in East Asia—Part IISource–receptor relationships. Atmospheric Environment, 2008, 42, 5956-5967.	1.9	63
112	A Modeling Study of Coarse Particulate Matter Pollution in Beijing: Regional Source Contributions and Control Implications for the 2008 Summer Olympics. Journal of the Air and Waste Management Association, 2008, 58, 1057-1069.	0.9	63
113	Development and initial application of the globalâ€throughâ€urban weather research and forecasting model with chemistry (GUâ€WRF/Chem). Journal of Geophysical Research, 2012, 117, .	3.3	63
114	Photoelectron spectra of inner valence shells. Part 2.—Unsaturated hydrocarbons. Journal of the Chemical Society, Faraday Transactions 2, 1974, 70, 1505-1515.	1.1	62
115	Assessment of air quality benefits from national air pollution control policies in China. Part I: Background, emission scenarios and evaluation of meteorological predictions. Atmospheric Environment, 2010, 44, 3442-3448.	1.9	61
116	The influence of Siberian forest fires on carbon monoxide concentrations at Happo, Japan. Atmospheric Environment, 2002, 36, 385-390.	1.9	59
117	Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. Journal of Geophysical Research, 2003, 108, .	3.3	59
118	Satellite observations of recent power plant construction in Inner Mongolia, China. Geophysical Research Letters, 2009, 36, .	1.5	59
119	A high-resolution and observationally constrained OMI NO ₂ satellite retrieval. Atmospheric Chemistry and Physics, 2017, 17, 11403-11421.	1.9	58
120	Sulfur dioxide emissions and sulfur deposition from international shipping in Asian waters. Atmospheric Environment, 1997, 31, 1573-1582.	1.9	57
121	Natural gas shortages during the "coal-to-gas―transition in China have caused a large redistribution of air pollution in winter 2017. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31018-31025.	3.3	56
122	Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. Journal of Geophysical Research, 2004, 109, .	3.3	54
123	Response of winter fine particulate matter concentrations to emission and meteorology changes in North China. Atmospheric Chemistry and Physics, 2016, 16, 11837-11851.	1.9	54
124	Quantifying the human health benefits of curbing air pollution in Shanghai. Journal of Environmental Management, 2004, 70, 49-62.	3.8	53
125	Black carbon emissions from biomass and coal in rural China. Atmospheric Environment, 2018, 176, 158-170.	1.9	53
126	Air pollution radiative forcing from specific emissions sectors at 2030. Journal of Geophysical Research, 2008, 113, .	3.3	51

#	Article	IF	CITATIONS
127	Global Mercury Emissions to the Atmosphere from Natural and Anthropogenic Sources. , 2009, , 1-47.		51
128	Acid rain in Asia. Environmental Management, 1992, 16, 541-562.	1.2	46
129	Modeling Regional/Urban Ozone and Particulate Matter in Beijing, China. Journal of the Air and Waste Management Association, 2009, 59, 37-44.	0.9	46
130	INTEGRATEDANALYSIS FORACIDRAIN INASIA: Policy Implications and Results of RAINS-ASIA Model. Annual Review of Environment and Resources, 2000, 25, 339-375.	1.2	44
131	Impacts of control strategies, the Great Recession and weekday variations on NO 2 columns above North American cities. Atmospheric Environment, 2016, 138, 74-86.	1.9	44
132	Satelliteâ€based estimates of reduced CO and CO ₂ emissions due to traffic restrictions during the 2008 Beijing Olympics. Geophysical Research Letters, 2012, 39, .	1.5	41
133	Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow. Journal of Geophysical Research, 2004, 109, .	3.3	40
134	The importance of China's household sector for black carbon emissions. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	40
135	Climate response to projected changes in shortâ€ l ived species under an A1B scenario from 2000–2050 in the GISS climate model. Journal of Geophysical Research, 2007, 112, .	3.3	40
136	Factors driving mercury variability in the Arctic atmosphere and ocean over the past 30 years. Global Biogeochemical Cycles, 2013, 27, 1226-1235.	1.9	37
137	Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities. Science of the Total Environment, 2019, 695, 133805.	3.9	37
138	Characteristics of Asian aerosol transport simulated with a regional-scale chemical transport model during the ACE-Asia observation. Journal of Geophysical Research, 2004, 109, .	3.3	36
139	Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation. Atmospheric Environment, 2007, 41, 2804-2819.	1.9	36
140	Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system. Science of the Total Environment, 2010, 408, 3277-3291.	3.9	35
141	Linking future aerosol radiative forcing to shifts in source activities. Geophysical Research Letters, 2007, 34, .	1.5	34
142	Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. Environmental Pollution, 2018, 238, 903-917.	3.7	34
143	Long-range transport of acidifying substances in East Asia—Part IModel evaluation and sensitivity studies. Atmospheric Environment, 2008, 42, 5939-5955.	1.9	33
144	Satellite detection and model verification of NO _{<i>x</i>} emissions from power plants in Northern China. Environmental Research Letters, 2010, 5, 044007.	2.2	33

#	Article	IF	CITATIONS
145	Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China. Resources, Conservation and Recycling, 2020, 159, 104812.	5.3	31
146	Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002. Journal of Geophysical Research, 2004, 109, .	3.3	30
147	A regional analysis of the fate and transport of mercury in East Asia and an assessment of major uncertainties. Atmospheric Environment, 2008, 42, 1144-1159.	1.9	30
148	Spatiotemporal dynamics of nitrogen dioxide pollution and urban development: Satellite observations over China, 2005–2016. Resources, Conservation and Recycling, 2019, 142, 59-68.	5.3	30
149	Targeted Strategies for Control of Acidic Deposition. Journal of the Air Pollution Control Association, 1984, 34, 1187-1197.	0.5	28
150	Sulfur Deposition in Asia: Seasonal Behavior and Contributions from Various Energy Sectors. Water, Air, and Soil Pollution, 2001, 131, 383-406.	1.1	28
151	Dissecting Future Aerosol Emissions: warming Tendencies and Mitigation Opportunities. Climatic Change, 2007, 81, 313-330.	1.7	26
152	Radiative forcing from household fuel burning in Asiaâ~†. Atmospheric Environment, 2009, 43, 5674-5681.	1.9	26
153	Response of the summertime ground-level ozone trend in the Chicago area to emission controls and temperature changes, 2005–2013. Atmospheric Environment, 2014, 99, 630-640.	1.9	26
154	PROFILE: Potential for Advanced Technology to Improve Air Quality and Human Health in Shanghai. Environmental Management, 1999, 23, 279-295.	1.2	25
155	Radiative forcing due to major aerosol emitting sectors in China and India. Geophysical Research Letters, 2013, 40, 4409-4414.	1.5	25
156	Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions. Atmospheric Environment, 2014, 87, 189-199.	1.9	24
157	Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Environmental Pollution, 2018, 238, 918-930.	3.7	24
158	Analyzing the spatio-temporal variation of the CO2 emissions from district heating systems with "Coal-to-Gas―transition: Evidence from GTWR model and satellite data in China. Science of the Total Environment, 2022, 803, 150083.	3.9	24
159	Urban NO _x emissions around the world declined faster than anticipated between 2005 and 2019. Environmental Research Letters, 2021, 16, 115004.	2.2	17
160	Mercury emissions from industrial sources in China. , 2009, , 67-79.		16
161	Examining the aerosol indirect effect over China using an SO2 emission inventory. Atmospheric Research, 2004, 72, 353-363.	1.8	15

162 Mercury emissions from coal combustion in China. , 2009, , 51-65.

#	Article	IF	CITATIONS
163	Air quality impacts as a result of changes in energy use in China's Jiangsu Province. Atmospheric Environment, 1998, 32, 1383-1395.	1.9	14
164	Black Smoke in China and Its Climate Effects. Asian Economic Papers, 2005, 4, 1-23.	3.3	14
165	Meteorological and air quality forecasting using the WRF–STEM model during the 2008 ARCTAS field campaign. Atmospheric Environment, 2011, 45, 6901-6910.	1.9	14
166	Response of fish tissue mercury in a freshwater lake to local, regional, and global changes in mercury emissions. Environmental Toxicology and Chemistry, 2014, 33, 1238-1247.	2.2	14
167	Analysis of the origins of black carbon and carbon monoxide transported to Beijing, Tianjin, and Hebei in China. Science of the Total Environment, 2019, 653, 1364-1376.	3.9	14
168	Investigating the spatially heterogeneous impacts of urbanization on city-level industrial SO2 emissions: Evidence from night-time light data in China. Ecological Indicators, 2021, 133, 108430.	2.6	14
169	Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation. Journal of Geophysical Research, 2007, 112, .	3.3	13
170	Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios. Atmospheric Environment, 2016, 139, 176-191.	1.9	12
171	Evaluation of China's Environmental Pressures Based on Satellite NO2 Observation and the Extended STIRPAT Model. International Journal of Environmental Research and Public Health, 2019, 16, 1487.	1.2	11
172	Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions. Atmospheric Environment, 2012, 51, 165-174.	1.9	10
173	Effectiveness of Mitigation Measures in Reducing Future Primary Particulate Matter Emissions from On-Road Vehicle Exhaust. Environmental Science & Technology, 2014, 48, 14455-14463.	4.6	9
174	Integrated assessment: Missing link in the acid rain debate?. Environmental Management, 1989, 13, 393-399.	1.2	7
175	Mitigation of acid rain—policy alternatives. The question of "acid rain―is fast becoming a political football as well as an environmental phenomenon. Here are the facts. Environmental Progress, 1982, 1, 146-153.	0.8	2
176	A Regional, New Source Bubble Policy: Its Advantages Illustrated for the State of Illinois. Journal of the Air Pollution Control Association, 1984, 34, 25-31.	0.5	2
177	The effect of acid rain legislation on the economics of CO2 recovery from power plants. Environmental Progress, 1988, 7, 247-256.	0.8	0
178	Impact Assessment of Growing Asian Megacity Emissions. , 2004, , 211-219.		0