Chao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/250117/publications.pdf

Version: 2024-02-01

44 papers

1,123 citations

394421 19 h-index 32 g-index

44 all docs

44 docs citations

44 times ranked 1073 citing authors

#	Article	IF	CITATIONS
1	Comparative analysis on the photolysis kinetics of four neonicotinoid pesticides and their photo-induced toxicity to Vibrio Fischeri: Pathway and toxic mechanism. Chemosphere, 2022, 287, 132303.	8.2	17
2	Bio-uptake, tissue distribution and metabolism of a neonicotinoid insecticide clothianidin in zebrafish. Environmental Pollution, 2022, 292, 118317.	7.5	18
3	Atmospheric persistence and toxicity evolution for fluorinated biphenylethyne liquid crystal monomers unveiled by in silico methods. Journal of Hazardous Materials, 2022, 424, 127519.	12.4	16
4	Dissolved Organic Matter Enhanced the Aggregation and Oxidation of Nanoplastics under Simulated Sunlight Irradiation in Water. Environmental Science & Environmental Science & 2022, 56, 3085-3095.	10.0	31
5	Application of machine learning to predict the inhibitory activity of organic chemicals on thyroid stimulating hormone receptor. Environmental Research, 2022, 212, 113175.	7.5	5
6	Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies. Chemosphere, 2022, 302, 134879.	8.2	7
7	Predicting reaction rate constants of ozone with ionic/non-ionic compounds in water. Science of the Total Environment, 2022, 835, 155501.	8.0	3
8	Identification of active or inactive agonists of tumor suppressor protein based on Tox21 library. Toxicology, 2022, , 153224.	4.2	0
9	Atmospheric Fate and Risk Investigation of Typical Liquid Crystal Monomers. ACS Sustainable Chemistry and Engineering, 2021, 9, 3600-3607.	6.7	32
10	Identification of active and inactive agonists/antagonists of estrogen receptor based on Tox21 10K compound library: Binomial analysis and structure alert. Ecotoxicology and Environmental Safety, 2021, 214, 112114.	6.0	6
11	Prediction of organic compounds adsorbed by polyethylene and chlorinated polyethylene microplastics in freshwater using QSAR. Environmental Research, 2021, 197, 111001.	7.5	18
12	Photo-induced degradation and toxicity change of decabromobiphenyl ethers (BDE-209) in water: Effects of dissolved organic matter and halide ions. Journal of Hazardous Materials, 2021, 416, 125842.	12.4	27
13	MOA-based linear and nonlinear QSAR models for predicting the toxicity of organic chemicals to Vibrio fischeri. Environmental Science and Pollution Research, 2020, 27, 9114-9125.	5.3	14
14	Integration of an XGBoost model and EIS detection to determine the effect of low inhibitor concentrations on E. coli. Journal of Electroanalytical Chemistry, 2020, 877, 114534.	3.8	6
15	Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter. Water Research, 2020, 185, 116241.	11.3	36
16	Electrochemical Cleaning of Fouled Laminar Graphene Membranes. Environmental Science and Technology Letters, 2020, 7, 773-778.	8.7	13
17	Quantitative structure-activity relationship models for predicting singlet oxygen reaction rate constants of dissociating organic compounds. Science of the Total Environment, 2020, 735, 139498.	8.0	20
18	QSAR modeling for reaction rate constants of e _{aq} ^{â^'} with diverse organic compounds in water. Environmental Science: Water Research and Technology, 2020, 6, 1931-1938.	2.4	9

#	Article	IF	CITATIONS
19	Predicting oxidative stress induced by organic chemicals by using quantitative Structure–Activity relationship methods. Ecotoxicology and Environmental Safety, 2020, 201, 110817.	6.0	9
20	Development of a quantitative structure-activity relationship model for mechanistic interpretation and quantum yield prediction of singlet oxygen generation from dissolved organic matter. Science of the Total Environment, 2020, 712, 136450.	8.0	16
21	QSAR modeling for the ozonation of diverse organic compounds in water. Science of the Total Environment, 2020, 715, 136816.	8.0	33
22	Photolysis and photo-induced toxicity of pyraclostrobin to Vibrio fischeri: Pathway and toxic mechanism. Aquatic Toxicology, 2020, 220, 105417.	4.0	15
23	Combined Toxicity of Nitro-Substituted Benzenes and Zinc to Photobacterium Phosphoreum: Evaluation and QSAR Analysis. International Journal of Environmental Research and Public Health, 2019, 16, 1041.	2.6	7
24	Trace amounts of fenofibrate acid sensitize the photodegradation of bezafibrate in effluents: Mechanisms, degradation pathways, and toxicity evaluation. Chemosphere, 2019, 235, 900-907.	8.2	26
25	Combined effects of dissolved organic matter, pH, ionic strength and halides on photodegradation of oxytetracycline in simulated estuarine waters. Environmental Sciences: Processes and Impacts, 2019, 21, 155-162.	3 . 5	20
26	Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways. Water Research, 2019, 151, 468-477.	11.3	61
27	Theoretical consideration on the prediction of inÂvivo toxicity from inÂvitro toxicity: Effect of bio-uptake equilibrium, kinetics and mode of action. Chemosphere, 2019, 221, 433-440.	8.2	6
28	Toxicity of some prevalent organic chemicals to tadpoles and comparison with toxicity to fish based on mode of toxic action. Ecotoxicology and Environmental Safety, 2019, 167, 138-145.	6.0	16
29	Kinetics and mechanism of OH-initiated atmospheric oxidation of organophosphorus plasticizers: A computational study on tri-p-cresyl phosphate. Chemosphere, 2018, 201, 557-563.	8.2	29
30	Aqueous OH Radical Reaction Rate Constants for Organophosphorus Flame Retardants and Plasticizers: Experimental and Modeling Studies. Environmental Science & Environmental Science & 2790-2799.	10.0	67
31	Development of thresholds of excess toxicity for environmental species and their application to identification of modes of acute toxic action. Science of the Total Environment, 2018, 616-617, 491-499.	8.0	26
32	Direct growth of ultra-permeable molecularly thin porous graphene membranes for water treatment. Environmental Science: Nano, 2018, 5, 3004-3010.	4.3	5
33	Comparison of modes of action between fish and zebrafish embryo toxicity for baseline, less inert, reactive and specifically-acting compounds. Chemosphere, 2018, 213, 414-422.	8.2	6
34	Investigation on the relationship between critical body residue and bioconcentration in zebrafish based on bio-uptake kinetics for five nitro-aromatics. Regulatory Toxicology and Pharmacology, 2018, 98, 18-23.	2.7	5
35	Atmospheric Oxidation of Piperazine Initiated by ·Cl: Unexpected High Nitrosamine Yield. Environmental Science & Technology, 2018, 52, 9801-9809.	10.0	45
36	Unveiling the important roles of coexisting contaminants on photochemical transformations of pharmaceuticals: Fibrate drugs as a case study. Journal of Hazardous Materials, 2018, 358, 216-221.	12.4	19

#	Article	IF	CITATIONS
37	Atmospheric chemical reaction mechanism and kinetics of 1,2-bis(2,4,6-tribromophenoxy)ethane initiated by OH radical: a computational study. RSC Advances, 2017, 7, 9484-9494.	3.6	11
38	Effects of Atmospheric Water on \hat{A} -OH-initiated Oxidation of Organophosphate Flame Retardants: A DFT Investigation on TCPP. Environmental Science & Eamp; Technology, 2017, 51, 5043-5051.	10.0	78
39	Discriminating modes of toxic action in mice using toxicity in BALB/c mouse fibroblast (3T3) cells. Chemosphere, 2017, 188, 73-80.	8.2	8
40	Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere, 2017, 168, 217-222.	8.2	126
41	Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers. PLoS ONE, 2014, 9, e86228.	2.5	10
42	Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures. Chemosphere, 2014, 95, 613-618.	8.2	45
43	Predicting Gaseous Reaction Rates of Short Chain Chlorinated Paraffins with ·OH: Overcoming the Difficulty in Experimental Determination. Environmental Science & Echnology, 2014, 48, 13808-13816.	10.0	67
44	Atmospheric Chemical Reactions of Monoethanolamine Initiated by OH Radical: Mechanistic and Kinetic Study. Environmental Science & Eamp; Technology, 2014, 48, 1700-1706.	10.0	89