Ivan Jirka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2501149/publications.pdf

Version: 2024-02-01

		394421	414414
50	1,047	19	32
papers	citations	h-index	g-index
50	50	50	1535
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Reversible Lectin Binding to Glycan-Functionalized Graphene. International Journal of Molecular Sciences, 2021, 22, 6661.	4.1	1
2	Fluorination of graphene leads to susceptibility for nanopore formation by highly charged ion impact. Physical Review Materials, $2021,5,.$	2.4	7
3	Electrochemical monitoring of metal ions removal in Fe0/H2O systems: competitive effects of cations Zn2+, Pb2+, and Cd2+. Monatshefte F¼r Chemie, 2020, 151, 1511-1523.	1.8	4
4	Heat treatment dependent cytotoxicity of silicalite-1 films deposited on Ti-6Al-4V alloy evaluated by bone-derived cells. Scientific Reports, 2020, 10, 9456.	3.3	5
5	Silicalite-1 Layers as a Biocompatible Nano- and Micro-Structured Coating: An In Vitro Study on MG-63 Cells. Materials, 2019, 12, 3583.	2.9	6
6	The Photodynamic Properties and the Genotoxicity of Heat-Treated Silicalite-1 Films. Materials, 2019, 12, 567.	2.9	4
7	Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis, 2018, 8, 1779-1789.	11.2	40
8	Applications of zeolites in biotechnology and medicine – a review. Biomaterials Science, 2018, 6, 974-989.	5.4	196
9	Interaction of silicalite-1 film with human osteoblast-like Saos-2 cells: The role of micro-morphology. Materials Letters, 2017, 190, 229-231.	2.6	7
10	Interaction of human osteoblast-like Saos-2 cells with stainless steel coated by silicalite-1 films. Materials Science and Engineering C, 2017, 76, 775-781.	7.3	10
11	REMOVAL OF DIQUATERNARY AMMONIUM CATIONS FROM AS-SYNTHESIZED SSZ-16 ZEOLITE. Acta Polytechnica CTU Proceedings, 2017, 9, 26.	0.3	1
12	Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	5
13	Static in-situ hydrothermal synthesis of small pore zeolite SSZ-16 (AFX) using heated and pre-aged synthesis mixtures. Microporous and Mesoporous Materials, 2016, 228, 107-115.	4.4	12
14	Effect of plasma composition on nanocrystalline diamond layers deposited by a microwave linear antenna plasmaâ€enhanced chemical vapour deposition system. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2418-2423.	1.8	15
15	Facile synthesis of CuO nanosheets via the controlled delamination of layered copper hydroxide acetate. Journal of Colloid and Interface Science, 2015, 452, 174-179.	9.4	23
16	Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy. PLoS ONE, 2014, 9, e100475.	2.5	47
17	Electrochemical Doping of Compact TiO ₂ Thin Layers. Journal of Physical Chemistry C, 2014, 118, 25970-25977.	3.1	24
18	On the role of Nb-related sites of an oxidized \hat{l}^2 -TiNb alloy surface in its interaction with osteoblast-like MG-63 cells. Materials Science and Engineering C, 2013, 33, 1636-1645.	7.3	63

#	Article	IF	CITATIONS
19	Combined silica sources to prepare preferentially oriented silicalite-1 layers on various supports. Microporous and Mesoporous Materials, 2013, 174, 154-162.	4.4	20
20	In situ Raman spectroelectrochemistry of graphene oxide. Physica Status Solidi (B): Basic Research, 2013, 250, 2662-2667.	1.5	26
21	Low-temperature thermal removal of template from high silica ZSM-5. Catalytic effect of zeolitic framework. Microporous and Mesoporous Materials, 2011, 137, 8-17.	4.4	24
22	Inorganicâ^'Organic Hybrid Materials: Layered Zinc Hydroxide Salts with Intercalated Porphyrin Sensitizers. Journal of Physical Chemistry C, 2010, 114, 16321-16328.	3.1	35
23	A method for electrochemical growth of homogeneous nanocrystalline ZnO thin films at room temperature. Electrochimica Acta, 2009, 54, 7558-7564.	5.2	46
24	The electrocatalytic behavior of Ru0.8Co0.2O2â^'xâ€"the effect of particle shape and surface composition. Electrochimica Acta, 2008, 53, 2656-2664.	5.2	69
25	Mathematical modelling of multicomponent transport in composite all-ceramic membranes containing a zeolitic phase. Studies in Surface Science and Catalysis, 2008, 174, 737-740.	1.5	0
26	Characterization of electro-eroded surface of Ti alloys. Journal of Physics: Conference Series, 2008, 100, 012004.	0.4	0
27	Interaction of Niobium with Polycrystalline Palladium Surface. X-ray Photoemission Study. Collection of Czechoslovak Chemical Communications, 2008, 73, 1314-1326.	1.0	0
28	Electrochemical Behavior of Nanocrystalline Ru[sub 0.8]Me[sub 0.2]O[sub 2â^'x] (Me=Fe,â€,Co,â€,Ni) Oxide Electrodes in Double-Layer Region. Journal of the Electrochemical Society, 2007, 154, A1077.	2.9	7
29	Layered Double Hydroxides with Intercalated Porphyrins as Photofunctional Materials:Â Subtle Structural Changes Modify Singlet Oxygen Production. Chemistry of Materials, 2007, 19, 3822-3829.	6.7	58
30	Interaction of ethylene with palladium clusters supported on oxidised tungsten foil. Surface Science, 2007, 601, 3114-3124.	1.9	3
31	Interaction of CO with Palladium Supported on Oxidized Tungsten. Journal of Physical Chemistry B, 2006, 110, 23837-23844.	2.6	3
32	Metal–support interactions in systems palladium deposited on oxidized tungsten surfaces. Surface Science, 2006, 600, 3943-3949.	1.9	4
33	Template removal from polycrystalline silicalite-1 self-supporting layer. Materials Chemistry and Physics, 2005, 90, 116-122.	4.0	5
34	Electron-Spectroscopic Studies of Thermal Stability of Pd/Nb Surfaces. European Physical Journal D, 2003, 53, 11-17.	0.4	2
35	On the Removal of Template from Silicalite-1 90° Intergrowths. A Study by X-ray Photoelectron Spectroscopy. Langmuir, 2002, 18, 1702-1706.	3.5	13
36	Copper Doped Waveguides in Glass Substrates. Fiber and Integrated Optics, 2002, 21, 63-74.	2.5	10

#	Article	IF	CITATIONS
37	lon Exchange of NH4â^'Ferrierite with Co2+:  ESCA Study. Journal of Physical Chemistry B, 2001, 105, 1140-1148.	2.6	14
38	A study of the preparation and properties of copper-containing optical planar glass waveguides. Solid State Ionics, 2001, 141-142, 609-615.	2.7	21
39	Thermal Removal of Ammonia from Mordenite. Journal of Catalysis, 2001, 200, 345-351.	6.2	4
40	Copper-doped waveguides in glass substrates. , 2001, 4277, 367.		0
41	Initial and Final State Effects in the Photoelectron and Auger Spectra of Si and Al Bonded in Zeolitesâ€. Journal of Physical Chemistry B, 1997, 101, 8133-8140.	2.6	11
42	Influence of Si/Al ratio on Auger line intensities of zeolites. Zeolites, 1996, 17, 310-313.	0.5	2
43	Towards an oscillation mechanism for the NO-CO reaction on Rhã€^110〉: NO dissociation kinetics and oxygen subsurface diffusion. Surface Science, 1995, 331-333, 23-29.	1.9	27
44	Surface reaction kinetics of NO on Rh{110}. Journal of Chemical Physics, 1994, 100, 8471-8482.	3.0	37
45	In situ scanning of surface reaction kinetics: NO dissociation on Rh{110}. Surface Science, 1993, 297, L100-L103.	1.9	15
46	ESCA study of Cu2+-Y and Cu2+-ZSM-5. Zeolites, 1991, 11, 77-80.	0.5	29
47	Esca Study of Incorporation of Copper into Y Zeolite. Studies in Surface Science and Catalysis, 1991, 69, 269-276.	1.5	11
48	An ESCA study of copper clusters on carbon. Surface Science, 1990, 232, 307-315.	1.9	57
49	Acetone Conversion and Deactivation of Zeolites. Studies in Surface Science and Catalysis, 1989, 49, 1203-1212.	1.5	21
50	Interaction of copper with oxygen on amorphous carbon surface. Applied Surface Science, 1989, 40, 135-143.	6.1	3