Stefan Pischinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2501077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sorption and Reaction of Biomass Derived HC Blends and Their Constituents on a Commercial Pt–Pd/Al2O3 Oxidation Catalyst. Catalysis Letters, 2022, 152, 1880-1894.	2.6	3
2	Perovskite Catalyst for In-Cylinder Coating to Reduce Raw Pollutant Emissions of Internal Combustion Engines. ACS Omega, 2022, 7, 5340-5349.	3.5	9
3	Blend for all or pure for few? Well-to-wheel life cycle assessment of blending electricity-based OME _{3–5} with fossil diesel. Sustainable Energy and Fuels, 2022, 6, 1959-1973.	4.9	10
4	Designed to Be Green, Economic, and Efficient: A Ketoneâ€Esterâ€Alcoholâ€Alkane Blend for Future Sparkâ€Ignition Engines. ChemSusChem, 2021, 14, 5254-5264.	6.8	8
5	Investigation of Filtration Phenomena of Air Pollutants on Cathode Air Filters for PEM Fuel Cells. Catalysts, 2021, 11, 1339.	3.5	5
6	Concepts for Hydrogen Internal Combustion Engines and Their Implications on the Exhaust Gas Aftertreatment System. Energies, 2021, 14, 8166.	3.1	25
7	Electrochemical conversion of a bio-derivable hydroxy acid to a drop-in oxygenate diesel fuel. Energy and Environmental Science, 2019, 12, 2406-2411.	30.8	45
8	Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Applied Energy, 2019, 239, 1242-1249.	10.1	98
9	Storage and Oxidation of Oxygen-Free and Oxygenated Hydrocarbons on a Pt–Pd Series Production Oxidation Catalyst. Topics in Catalysis, 2019, 62, 376-385.	2.8	6
10	Cleaner production of cleaner fuels: wind-to-wheel – environmental assessment of CO ₂ -based oxymethylene ether as a drop-in fuel. Energy and Environmental Science, 2018, 11, 331-343.	30.8	195
11	Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide. Applied Energy, 2018, 231, 757-767.	10.1	79
12	Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angewandte Chemie - International Edition, 2017, 56, 5412-5452.	13.8	224
13	Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel, 2017, 209, 232-237.	6.4	115
14	Tailor-Made Fuels from Biomass: Potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel, 2016, 167, 106-117.	6.4	111
15	Combustion and emission behavior of linear C ₈ -oxygenates. International Journal of Engine Research, 2015, 16, 627-638.	2.3	40
16	Combustion rate shaping for flex-fuel applications. International Journal of Engine Research, 0, , 146808742211107.	2.3	2