Chengbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2500817/publications.pdf

Version: 2024-02-01

257357 243529 1,958 48 24 44 citations h-index g-index papers 48 48 48 1625 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Efficiency and Optimal Loads Analysis for Multiple-Receiver Wireless Power Transfer Systems. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 801-812.	2.9	192
2	An Adaptive Fuzzy Logic-Based Energy Management Strategy on Battery/Ultracapacitor Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2016, 2, 300-311.	5. 3	173
3	Compensation of Cross Coupling in Multiple-Receiver Wireless Power Transfer Systems. IEEE Transactions on Industrial Informatics, 2016, 12, 474-482.	7.2	151
4	A 6.78 MHz Multiple-Receiver Wireless Power Transfer System With Constant Output Voltage and Optimum Efficiency. IEEE Transactions on Power Electronics, 2018, 33, 5330-5340.	5 . 4	103
5	Battery Cell Equalization via Megahertz Multiple-Receiver Wireless Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 4135-4144.	5.4	89
6	Nonlinear dynamic analysis of fractional order rub-impact rotor system. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1443-1463.	1.7	83
7	Loading and Power Control for a High-Efficiency Class E PA-Driven Megahertz WPT System. IEEE Transactions on Industrial Electronics, 2016, 63, 6867-6876.	5.2	76
8	Megahertz Multiple-Receiver Wireless Power Transfer Systems With Power Flow Management and Maximum Efficiency Point Tracking. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4285-4293.	2.9	70
9	Analysis and Optimized Design of Compensation Capacitors for a Megahertz WPT System Using Full-Bridge Rectifier. IEEE Transactions on Industrial Informatics, 2019, 15, 95-104.	7.2	63
10	A Game Theory Approach to Energy Management of An Engine–Generator/Battery/Ultracapacitor Hybrid Energy System. IEEE Transactions on Industrial Electronics, 2016, 63, 4266-4277.	5 . 2	58
11	Low-Harmonic-Contents and High-Efficiency Class E Full-Wave Current-Driven Rectifier for Megahertz Wireless Power Transfer Systems. IEEE Transactions on Power Electronics, 2017, 32, 1198-1209.	5.4	57
12	Fractional-order control: Theory and applications in motion control [Past and present]. IEEE Industrial Electronics Magazine, 2007, 1, 6-16.	2.3	55
13	Tunable Class \$E^2\$ DC–DC Converter With High Efficiency and Stable Output Power for 6.78-MHz Wireless Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 6877-6886.	5.4	51
14	A Low-Cost Voltage Equalizer Based on Wireless Power Transfer and a Voltage Multiplier. IEEE Transactions on Industrial Electronics, 2018, 65, 5487-5496.	5.2	49
15	Analysis and Design of A Robust Class \$E^2\$ DC–DC Converter for Megahertz Wireless Power Transfer. IEEE Transactions on Power Electronics, 2017, 32, 2835-2845.	5.4	47
16	Distributed Electric Vehicles Charging Management Considering Time Anxiety and Customer Behaviors. IEEE Transactions on Industrial Informatics, 2021, 17, 2422-2431.	7.2	47
17	A Two-Stage Scheme for Both Power Allocation and EV Charging Coordination in a Grid-Tied PV–Battery Charging Station. IEEE Transactions on Industrial Informatics, 2021, 17, 6994-7004.	7.2	45
18	Equivalent Series Resistance-Based Energy Loss Analysis of a Battery Semiactive Hybrid Energy Storage System. IEEE Transactions on Energy Conversion, 2015, 30, 1081-1091.	3.7	44

#	Article	IF	CITATIONS
19	Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach. International Journal of Energy Research, 2021, 45, 16633-16648.	2.2	43
20	Battery Charging Profile-Based Parameter Design of a 6.78-MHz Class \$E^2\$ Wireless Charging System. IEEE Transactions on Industrial Electronics, 2017, 64, 6169-6178.	5 . 2	41
21	Autonomous Power Control in a Reconfigurable 6.78-MHz Multiple-Receiver Wireless Charging System. IEEE Transactions on Industrial Electronics, 2018, 65, 6177-6187.	5.2	38
22	Distributed Electric Vehicles Charging Management With Social Contribution Concept. IEEE Transactions on Industrial Informatics, 2020, 16, 3483-3492.	7.2	33
23	A High-Efficiency/Output Power and Low-Noise Megahertz Wireless Power Transfer System Over a Wide Range of Mutual Inductance. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4317-4325.	2.9	31
24	Analysis and Design of a High-Efficiency 6.78-MHz Wireless Power Transfer System With Scalable Number of Receivers. IEEE Transactions on Industrial Electronics, 2020, 67, 8281-8291.	5 . 2	30
25	Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems. IET Generation, Transmission and Distribution, 2020, 14, 4217-4224.	1.4	25
26	Decentralized Real-Time Energy Management for a Reconfigurable Multiple-Source Energy System. IEEE Transactions on Industrial Informatics, 2018, 14, 4128-4137.	7.2	23
27	Distributed Charging Management of Electric Vehicles Considering Different Customer Behaviors. IEEE Transactions on Industrial Informatics, 2020, 16, 5119-5127.	7.2	21
28	Analysis and Implementation of 3D Magnetic Field Shaping via a 2D Planar Transmitting Coil Array. IEEE Transactions on Power Electronics, 2022, 37, 1172-1184.	5 . 4	21
29	Dynamic emulation of road/tyre longitudinal interaction for developing electric vehicle control systems. Vehicle System Dynamics, 2011, 49, 433-447.	2.2	20
30	Distributed charging management of multiâ€class electric vehicles with different charging priorities. IET Generation, Transmission and Distribution, 2019, 13, 5257-5264.	1.4	18
31	A Universal Optimal Drain–Source Voltage Tracking Scheme for Synchronous Resonant Rectifiers in Megahertz Wireless Power Transfer Applications. IEEE Transactions on Power Electronics, 2021, 36, 5147-5156.	5.4	18
32	Backlash Vibration Suppression Control of Torsional System by Novel Fractional Order PIDk Controller. IEEJ Transactions on Industry Applications, 2004, 124, 312-317.	0.1	18
33	The Time-Scaled Trapezoidal Integration Rule for Discrete Fractional Order Controllers. Nonlinear Dynamics, 2004, 38, 171-180.	2.7	17
34	Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles. Energies, 2015, 8, 3556-3577.	1.6	16
35	Quantitative Efficiency and Temperature Analysis of Battery-Ultracapacitor Hybrid Energy Storage Systems. IEEE Transactions on Sustainable Energy, 2016, 7, 1791-1802.	5.9	16
36	Equivalent Series Resistance-based Real-time Control of Battery-Ultracapacitor Hybrid Energy Storage Systems. IEEE Transactions on Industrial Electronics, 2020, 67, 1999-2008.	5.2	16

#	Article	IF	CITATIONS
37	A Wide-Load-Range and Compact MHz Wireless Power Transfer System Based on Novel Reactance Compression Design and Edge Inductor. IEEE Transactions on Power Electronics, 2021, 36, 11183-11195.	5.4	12
38	Active Class E Rectifier for DC Output Voltage Regulation in Megahertz Wireless Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2020, 67, 3618-3628.	5.2	11
39	Single-parameter skidding detection and control specified for electric vehicles. Journal of the Franklin Institute, 2015, 352, 724-743.	1.9	9
40	Prediction-Based Game-Theoretic Strategy for Energy Management of Hybrid Electric Vehicles. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3, 79-89.	3.0	6
41	Time-Domain Evaluation of Fractional Order Controllers' Direct Discretization Methods. IEEJ Transactions on Industry Applications, 2004, 124, 837-842.	0.1	5
42	The Assignment of Generalized Time Constant for A Non-All-Pole System. IEEE Transactions on Industrial Electronics, 2015, 62, 4276-4287.	5 . 2	4
43	Analysis and Design of a Self-Resonant Rectenna for Small-Size and Ultraloosely Coupled MHz Wireless Power Transfer Applications. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021, 2, 535-544.	3.0	4
44	Guest Editorial Special Section on Networked Energy Systems: Architectures, Communication, and Management. IEEE Transactions on Industrial Informatics, 2016, 12, 1896-1899.	7.2	3
45	Guest Editorial: Special Section on Information and Control Technologies in the Electrification of Transportation. IEEE Transactions on Industrial Informatics, 2014, 10, 1904-1906.	7.2	2
46	Guest Editorial Special Section on Cyber-Physical Systems in Green Transportation. IEEE Transactions on Industrial Informatics, 2018, 14, 4124-4127.	7.2	2
47	A decentralized power dispatch strategy in an electric vehicle charging station. IET Electrical Systems in Transportation, 2021, 11, 25-35.	1.5	2
48	A Cross-Disciplinary Outlook of Directions and Challenges in Industrial Electronics. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 375-391.	4.8	0