Ilka Kriegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2500617/publications.pdf

Version: 2024-02-01

257357 182361 2,780 71 24 51 citations h-index g-index papers 74 74 74 4206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of Magnetic Scaffold Loading Patterns on Their Hyperthermic Potential Against Bone Tumors. IEEE Transactions on Biomedical Engineering, 2022, 69, 2029-2040.	2.5	15
2	Modelling and fabrication of one-dimensional flexible multilayer photonic crystals based on polymers and inorganic materials. Optical Materials, 2022, 123, 111859.	1.7	5
3	Control of electronic band profiles through depletion layer engineering in core–shell nanocrystals. Nature Communications, 2022, 13, 537.	5.8	27
4	Experimental Method to Distinguish between a Solution and a Suspension. Advanced Materials Interfaces, 2022, 9, .	1.9	3
5	Generation of Free Carriers in MoSe ₂ Monolayers Via Energy Transfer from CsPbBr ₃ Nanocrystals. Advanced Optical Materials, 2022, 10, .	3.6	7
6	Photodoping of metal oxide nanocrystals for multi-charge accumulation and light-driven energy storage. Nanoscale, 2021, 13, 8773-8783.	2.8	25
7	OD Nanocrystals as Lightâ€Driven, Localized Chargeâ€Injection Sources for the Contactless Manipulation of Atomically Thin 2D Materials. Advanced Photonics Research, 2021, 2, 2000151.	1.7	9
8	Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. Journal of Physical Chemistry C, 2021, 125, 11857-11866.	1.5	41
9	Opportunities from Doping of Nonâ€Critical Metal Oxides in Last Generation Lightâ€Conversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	10.2	29
10	(INVITED) Stable solution emission of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane. Optical Materials: X, 2021, 11, 100081.	0.3	0
11	Multi-charge transfer from photodoped ITO nanocrystals. Nanoscale Advances, 2021, 3, 6628-6634.	2.2	7
12	Colloidal Bi-Doped Cs ₂ Ag _{1–<i>x</i>} Na _{<i>x</i>} InCl ₆ Nanocrystals: Undercoordinated Surface Cl Ions Limit their Light Emission Efficiency., 2020, 2, 1442-1449.		41
13	Hybrid plasmonic/photonic crystals for optical detection of bacterial contaminants. EPJ Web of Conferences, 2020, 238, 07002.	0.1	0
14	The ultrafast onset of exciton formation in 2D semiconductors. Nature Communications, 2020, 11, 5277.	5.8	57
15	Electro-responsivity in electrolyte-free and solution processed Bragg stacks. Journal of Materials Chemistry C, 2020, 8, 13019-13024.	2.7	12
16	Large scale indium tin oxide (ITO) one dimensional gratings for ultrafast signal modulation in the visible spectral region. Physical Chemistry Chemical Physics, 2020, 22, 6881-6887.	1.3	11
17	Light-Driven Permanent Charge Separation across a Hybrid Zero-Dimensional/Two-Dimensional Interface. Journal of Physical Chemistry C, 2020, 124, 8000-8007.	1.5	14
18	Integration of bio-responsive silver in 1D photonic crystals: towards the colorimetric detection of bacteria. Faraday Discussions, 2020, 223, 125-135.	1.6	14

#	Article	IF	CITATIONS
19	Ultrafast photochromism and bacteriochromism in one dimensional hybrid plasmonic photonic structures., 2020,,.		2
20	Hybrid One-Dimensional Plasmonic–Photonic Crystals for Optical Detection of Bacterial Contaminants. Journal of Physical Chemistry Letters, 2019, 10, 4980-4986.	2.1	50
21	Indium Tin Oxide Nanoparticle: TiO2: Air Layers for One-Dimensional Multilayer Photonic Structures. Applied Sciences (Switzerland), 2019, 9, 2564.	1.3	5
22	Solution processable and optically switchable 1D photonic structures. Scientific Reports, 2018, 8, 3517.	1.6	38
23	Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au ³⁺ ions. Nanoscale, 2018, 10, 2781-2789.	2.8	28
24	Rationalizing the Impact of Surface Depletion on Electrochemical Modulation of Plasmon Resonance Absorption in Metal Oxide Nanocrystals. ACS Photonics, 2018, 5, 2044-2050.	3.2	29
25	Light-induced switching in pDTE–FICO 1D photonic structures. Optics Communications, 2018, 410, 703-706.	1.0	4
26	Covalent functionalized black phosphorus quantum dots. Optical Materials, 2018, 75, 521-524.	1.7	11
27	Tantalum Arsenide-Based One-Dimensional Photonic Structures. Ceramics, 2018, 1, 139-144.	1.0	2
28	Electro-optic and magneto-optic photonic devices based on multilayer photonic structures. Journal of Photonics for Energy, $2018, 8, 1$.	0.8	29
29	One-dimensional disordered photonic structures with two or more materials. , 2018, , .		0
30	Structural color tuning in 1D photonic crystals with electric field and magnetic field., 2018,,.		0
31	Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPd _{<i>x</i>} S Shell. Chemistry of Materials, 2017, 29, 1716-1723.	3.2	50
32	Tailoring the optical properties of one-dimensional (1D) photonic structures. , 2017, , .		0
33	Ultrafast carrier dynamics unravel role of surface ligands and metal domain size on the photocatalytic hydrogen evolution efficiency of Au-tipped CdS nanorods: an ultrafast transient absorption spectroscopy study. Proceedings of SPIE, 2017, , .	0.8	1
34	Structural color tuning in a Ag/TiO $<$ sub $>$ 2 $<$ /sub $>$ nanoparticle one-dimensional photonic crystal induced by electric field. Proceedings of SPIE, 2017, , .	0.8	0
35	Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Physics Reports, 2017, 674, 1-52.	10.3	252
36	Unraveling electron and hole relaxation dynamics in colloidal CdTe nanorods: a two-dimensional electronic spectroscopy study. Proceedings of SPIE, $2017, , .$	0.8	0

#	Article	IF	Citations
37	Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures. Journal of Physical Chemistry Letters, 2017, 8, 2285-2290.	2.1	17
38	Magneto-optical switching in microcavities based on a TGG defect sandwiched between periodic and disordered one-dimensional photonic structures. Optik, 2017, 142, 249-255.	1.4	8
39	Colloidal Synthesis of Bipolar Off-Stoichiometric Gallium Iron Oxide Spinel-Type Nanocrystals with Near-IR Plasmon Resonance. Journal of the American Chemical Society, 2017, 139, 1198-1206.	6.6	25
40	Quasi-Static Resonances in the Visible Spectrum from All-Dielectric Intermediate Band Semiconductor Nanocrystals. Nano Letters, 2017, 17, 7691-7695.	4.5	38
41	Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures. Optical Materials, 2017, 72, 403-421.	1.7	120
42	Three material and four material one-dimensional phononic crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 34-37.	1.3	7
43	Black phosphorus-based one-dimensional photonic crystals and microcavities. Applied Optics, 2016, 55, 9288.	2.1	8
44	Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal. Beilstein Journal of Nanotechnology, 2016, 7, 1404-1410.	1.5	25
45	Periodic transmission peak splitting in one dimensional disordered photonic structures. Optical Materials, 2016, 58, 113-115.	1.7	0
46	Ultrafast Hole Transfer from (6,5) SWCNT to P3HT:PCBM Blend by Resonant Excitation. Journal of Physical Chemistry Letters, 2016, 7, 3353-3358.	2.1	5
47	Ultrafast Photodoping and Plasmon Dynamics in Fluorine–Indium Codoped Cadmium Oxide Nanocrystals for All-Optical Signal Manipulation at Optical Communication Wavelengths. Journal of Physical Chemistry Letters, 2016, 7, 3873-3881.	2.1	46
48	A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice. Thin Solid Films, 2016, 612, 327-330.	0.8	0
49	Colloidal CuFeS ₂ Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. Chemistry of Materials, 2016, 28, 4848-4858.	3.2	126
50	Delayed electron relaxation in CdTe nanorods studied by spectral analysis of the ultrafast transient absorption. Chemical Physics, 2016, 471, 39-45.	0.9	8
51	Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nature Communications, 2016, 7, 10413.	5.8	184
52	Electron and hole relaxation dynamics in CdTe nanorods studied by two-dimensional electronic spectroscopy. , 2016 , , .		0
53	Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite. Beilstein Journal of Nanotechnology, 2015, 6, 193-200.	1.5	10
54	Molecularâ€Level Switching of Polymer/Nanocrystal Nonâ€Covalent Interactions and Application in Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 111-119.	7.8	50

#	Article	IF	Citations
55	Band gap splitting and average transmission lowering in ordered and disordered one-dimensional photonic structures composed by more than two materials with the same optical thickness. Optics Communications, 2015, 338, 523-527.	1.0	19
56	Plasmonic Heavily-Doped Semiconductor Nanocrystal Dielectrics: Making Static Photonic Crystals Dynamic. Journal of Physical Chemistry C, 2015, 119, 2775-2782.	1.5	14
57	Cu _{3-<i>x</i>} P Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions. Chemistry of Materials, 2015, 27, 1120-1128.	3.2	137
58	Electronically coupled hybrid structures by graphene oxide directed self-assembly of Cu _{2â^3x} S nanocrystals. Nanoscale, 2015, 7, 6675-6682.	2.8	9
59	Optical properties of one-dimensional disordered multilayer photonic structures. , 2015, , .		3
60	Periodic transmission peaks in non-periodic disordered one-dimensional photonic structures. Optical Materials, 2015, 44, 54-57.	1.7	4
61	Shape-Dependent Field Enhancement and Plasmon Resonance of Oxide Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 6227-6238.	1.5	102
62	Synthesis, optical properties, and photochemical activity of zinc-indium-sulfide nanoplates. RSC Advances, 2015, 5, 89577-89585.	1.7	19
63	One dimensional disordered photonic structures characterized by uniform distributions of clusters. Optical Materials, 2015, 39, 235-238.	1.7	23
64	Effect of Surface Coating on the Photocatalytic Function of Hybrid CdS-Au Nanorods. Small, 2015, 11, 462-471.	5.2	124
65	VACANCY-DOPED PLASMONIC COPPER CHALCOGENIDE NANOCRYSTALS WITH TUNABLE OPTICAL PROPERTIES. , 2014, , .		0
66	Exciton recombination dynamics in type II CdTe-Cu2-xTe nano-heterostructures with excitonic and plasmonic properties. , 2014, , .		0
67	Cation exchange synthesis and optoelectronic properties of type II CdTe–Cu2â^'xTe nano-heterostructures. Journal of Materials Chemistry C, 2014, 2, 3189.	2.7	29
68	Shedding Light on Vacancy-Doped Copper Chalcogenides: Shape-Controlled Synthesis, Optical Properties, and Modeling of Copper Telluride Nanocrystals with Near-Infrared Plasmon Resonances. ACS Nano, 2013, 7, 4367-4377.	7.3	186
69	Tuning the Excitonic and Plasmonic Properties of Copper Chalcogenide Nanocrystals. Journal of the American Chemical Society, 2012, 134, 1583-1590.	6.6	454
70	Tuning the Light Absorption of Cu $<$ sub $>$ 1.97 $<$ /sub $>$ S Nanocrystals in Supercrystal Structures. Chemistry of Materials, 2011, 23, 1830-1834.	3.2	46
71	Charge Transfer Excitons in Polymer/Fullerene Blends: The Role of Morphology and Polymer Chain Conformation. Advanced Functional Materials, 2009, 19, 3662-3668.	7.8	116