Shih-I Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2500533/publications.pdf

Version: 2024-02-01

197 papers	7,572 citations	47006 47 h-index	79 g-index
197	197	197	2326
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chemical Physics, 1997, 217, 119-130.	1.9	384
2	Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Physics Reports, 2004, 390, 1-131.	25.6	372
3	Recent Developments in Semiclassical Floquet Theories for Intense-Field Multiphoton Processes. Advances in Atomic and Molecular Physics, 1985, , 197-253.	2.0	275
4	Stark ionization in dc and ac fields: AnL2complex-coordinate approach. Physical Review A, 1983, 27, 2946-2970.	2.5	231
5	Intense Field Multiphoton Ionization via Complex Dressed States: Application to the H Atom. Physical Review Letters, 1977, 39, 1195-1198.	7.8	217
6	Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Physical Review A, 2004, 70, .	2.5	206
7	Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses. Physical Review A, 2000, 61, .	2.5	188
8	Threshold shift and above-threshold multiphoton ionization of atomic hydrogen in intense laser fields. Physical Review A, 1985, 32, 2769-2775.	2.5	186
9	Density-functional theory with optimized effective potential and self-interaction correction for ground states and autoionizing resonances. Physical Review A, 1997, 55, 3406-3416.	2.5	159
10	Sub-cycle Oscillations in Virtual States Brought to Light. Scientific Reports, 2013, 3, .	3.3	147
11	Time-dependent density-functional theory for strong-field multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation. Physical Review A, 1998, 57, 452-461.	2.5	133
12	Semiclassical many-mode floquet theory. Chemical Physics Letters, 1983, 96, 464-471.	2.6	130
13	Creation and control of a single coherent attosecond xuv pulse by few-cycle intense laser pulses. Physical Review A, 2006, 74, .	2.5	130
14	Generalized pseudospectral methods with mappings for bound and resonance state problems. Chemical Physics Letters, 1993, 204, 381-388.	2.6	120
15	Self-interaction-free time-dependent density-functional theory for molecular processes in strong fields:â€, High-order harmonic generation ofH2in intense laser fields. Physical Review A, 2001, 63, .	2.5	110
16	Multiphoton detachment ofHâ^'. II. Intensity-dependent photodetachment rates and threshold behaviorâ€"complex-scaling generalized pseudospectral method. Physical Review A, 1994, 50, 3208-3215.	2.5	104
17	Time-dependent density-functional theory for molecular processes in strong fields: Study of multiphoton processes and dynamical response of individual valence electrons of N2 in intense laser fields. Physical Review A, 2001, 64, .	2.5	99
18	Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach. Physical Review A, 2009, 80, .	2.5	96

#	Article	IF	CITATIONS
19	Coherent phase-matched VUV generation by field-controlled bound states. Nature Photonics, 2014, 8, 437-441.	31.4	94
20	Multiphoton ionization and high-order harmonic generation of He, Ne, and Ar atoms in intense pulsed laser fields: Self-interaction-free time-dependent density-functional theoretical approach. Physical Review A, 2001, 64, .	2.5	88
21	Quantum computing with superconducting devices:â€fA three-level SQUID qubit. Physical Review B, 2002, 66, .	3.2	86
22	<i>Ab initio</i> >study of the orientation effects in multiphoton ionization and high-order harmonic generation from the ground and excited electronic states of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn><mml:none></mml:none><mml:none></mml:none><mml:mo>+</mml:mo></mml:mmultiscripts></mml:math> . Physical Review A, 2007, 76, .	2.5	84
23	Laser-induced molecular stabilization and trapping and chemical bond hardening in intense laser fields. Chemical Physics Letters, 1992, 197, 413-418.	2.6	83
24	Role of the electronic structure and multielectron responses in ionization mechanisms of diatomic molecules in intense short-pulse lasers: An all-electronab initiostudy. Physical Review A, 2004, 70, .	2.5	83
25	Generalized Floquet Theoretical Approaches to Intense-Field Multiphoton and Nonlinear Optical Processes. Advances in Chemical Physics, 2007, , 739-799.	0.3	80
26	Rotational excitation of CH+by electron impact. Physical Review A, 1974, 10, 788-792.	2.5	79
27	Strong-field ionization of laser-irradiated light homonuclear diatomic molecules: A generalized strong-field approximation–linear combination of atomic orbitals model. Physical Review A, 2005, 71, .	2.5	78
28	Recent development of self-interaction-free time-dependent density-functional theory for nonperturbative treatment of atomic and molecular multiphoton processes in intense laser fields. Journal of Chemical Physics, 2005, 123, 062207.	3.0	76
29	Semiclassical many-mode Floquet theory. II. Non-linear multiphoton dynamics of a two-level system in a strong bichromatic field. Journal of Physics B: Atomic and Molecular Physics, 1984, 17, 2101-2128.	1.6	75
30	Floquet formulation for the investigation of multiphoton quantum interference in a superconducting qubit driven by a strong ac field. Physical Review A, 2009, 79, .	2.5	73
31	Molecular-bond hardening and dynamics of molecular stabilization and trapping in intense laser pulses. Physical Review A, 1993, 48, 485-494.	2.5	69
32	Complex-scaling generalized pseudospectral method for quasienergy resonance states in two-center systems: Application to the Floquet study of charge resonance enhanced multiphoton ionization of molecular ions in intense low-frequency laser fields. Physical Review A, 2000, 63, .	2.5	69
33	Multielectron effects on the orientation dependence and photoelectron angular distribution of multiphoton ionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mn 2009,="" 80<="" a.="" fields.="" laser="" physical="" review="" strong="" td=""><td>>2</td><td>nn></td></mml:mn></mml:msub></mml:mrow></mml:math>	>2	nn>
34	Theory of collision-induced translation-rotation spectra:H2-He. Physical Review A, 1984, 29, 595-604.	2.5	64
35	Complex-scaling Fourier-grid Hamiltonian method. III. Oscillatory behavior of complex quasienergies and the stability of negative ions in very intense laser fields. Physical Review A, 1992, 45, 6735-6743.	2.5	64
36	High-order-harmonic generation in homonuclear and heteronuclear diatomic molecules: Exploration of multiple orbital contributions. Physical Review A, 2011, 83, .	2.5	64

#	Article	IF	Citations
37	Semiclassical many-mode Floquet theory. III. SU(3) dynamical evolution of three-level systems in intense bichromatic fields. Physical Review A, 1985, 31, 659-676.	2.5	59
38	High-order harmonic generation in atomic hydrogen at 248 nm: Dipole-moment versus acceleration spectrum. Physical Review A, 1992, 46, 7322-7324.	2.5	59
39	Exterior complex scaling method in time-dependent density-functional theory: Multiphoton ionization and high-order-harmonic generation of Ar atoms. Physical Review A, 2013, 87, .	2.5	58
40	Time-dependent approach to high-resolution spectroscopy and quantum dynamics of Rydberg atoms in crossed magnetic and electric fields. Physical Review A, 2000, 61, .	2.5	57
41	Ab initiostudy of high-order harmonic generation ofH2+in intense laser fields: Time-dependent non-Hermitian Floquet approach. Physical Review A, 2005, 71, .	2.5	57
42	Multiphoton detachment ofHâ^'near the one-photon threshold: Exterior complex-scalingâ€"generalized pseudospectral method for complex quasienergy resonances. Physical Review A, 1999, 59, 2864-2874.	2.5	56
43	Generation of isolated sub-20-attosecond pulses from He atoms by two-color midinfrared laser fields. Physical Review A, 2014, 89, .	2.5	54
44	Generation of circularly polarized multiple high-order harmonic emission from two-color crossed laser beams. Physical Review A, 1998, 58, R2656-R2659.	2.5	52
45	Effects of electron structure and multielectron dynamical response on strong-field multiphoton ionization of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional-theory approach. Physical Review A, 2009, 79, .	2.5	51
46	Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field. Nature Communications, 2015, 6, 7178.	12.8	51
47	Cyclic quantum evolution and Aharonov-Anandan geometric phases in SU(2) spin-coherent states. Physical Review A, 1990, 41, 42-48.	2.5	49
48	Two-color phase control of high-order harmonic generation in intense laser fields. Physical Review A, 1995, 52, 3988-3996.	2.5	49
49	Quasienergy formalism for intense field multiphoton ionization of atoms induced by circularly polarized radiation. Chemical Physics Letters, 1978, 54, 367-372.	2.6	45
50	Floquet-Liouville supermatrix approach: Time development of density-matrix operator and multiphoton resonance fluorescence spectra in intense laser fields. Physical Review A, 1986, 33, 1798-1816.	2.5	45
51	The complex-scaling fourier-grid Hamiltonian method for resonance state problems. Chemical Physics Letters, 1990, 167, 155-157.	2.6	45
52	Energy deposition in SO2 via intense infrared laser multiphoton excitation. Chemical Physics Letters, 1983, 101, 446-451.	2.6	43
53	Multiphoton detachment ofHâ^'. Physical Review A, 1993, 48, 4654-4663.	2.5	42
54	Probing the origin of elliptical high-order harmonic generation from aligned molecules in linearly polarized laser fields. Physical Review A, $2010,82,.$	2.5	42

#	Article	IF	Citations
55	Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED. Physical Review A, 2004, 70, .	2.5	39
56	Effect of electron correlation on high-order-harmonic generation of helium atoms in intense laser fields: Time-dependent generalized pseudospectral approach in hyperspherical coordinates. Physical Review A, 2006, 73, .	2.5	39
57	Role of laser-driven electron-multirescattering in resonance-enhanced below-threshold harmonic generation in He atoms. Physical Review A, 2014, 90, .	2.5	36
58	Coupled dressed-states formalism for multiphoton excitation and population inversion by coherent pulses. Chemical Physics Letters, 1987, 141, 315-322.	2.6	35
59	Relativistic density-functional theory with the optimized effective potential and self-interaction correction: Application to atomic structure calculations(Z=2–106). Physical Review A, 1998, 57, 855-863.	2.5	35
60	Semiclassical many-mode Floquet theory. IV. Coherent population trapping and SU(3) dynamical evolution of dissipative three-level systems in intense bichromatic fields. Physical Review A, 1985, 32, 377-395.	2.5	34
61	Precision calculation of above-threshold multiphoton ionization in intense short-wavelength laser fields: The momentum-space approach and time-dependent generalized pseudospectral method. Physical Review A, 2011, 83, .	2.5	33
62	Density-functional calculations on singly and doubly excited Rydberg states of many-electron atoms. Physical Review A, 2002, 65, .	2.5	31
63	Above-threshold-ionization spectra from the core region of a time-dependent wave packet: An <i>ab initio</i> time-dependent approach. Physical Review A, 2009, 79, .	2.5	31
64	Dilatation transformation and the stark—zeeman effect. Chemical Physics Letters, 1978, 58, 462-466.	2.6	30
65	Classical and quantal nonperturbative treatments of multiphoton and above-threshold ionization. Journal of the Optical Society of America B: Optical Physics, 1987, 4, 720.	2.1	30
66	Floquet formulation of time-dependent density functional theory. Chemical Physics Letters, 1997, 264, 466-476.	2.6	30
67	Highâ€order harmonic generation of heteronuclear diatomic molecules in intense ultrashort laser fields: An allâ€electron TDDFT study. International Journal of Quantum Chemistry, 2007, 107, 3159-3168.	2.0	30
68	Low-energy structure of above-threshold-ionization electron spectra: Role of the Coulomb threshold effect. Physical Review A, 2011, 83, .	2.5	30
69	Maximum attainable field-free molecular orientation of a thermal ensemble with near–single-cycle THz pulses. Physical Review A, 2013, 87, .	2.5	30
70	Optimal control of high-order harmonics for the generation of an isolated ultrashort attosecond pulse with two-color midinfrared laser fields. Physical Review A, 2015, 91, .	2.5	30
71	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mo>+</mml:mo>< and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub< td=""><td>/mml:msu 2.5</td><td>p></td></mml:msub<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msup></mml:math></mml:msup>	/mml:msu 2.5	p>
72	mathvariant='normal'>D <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> < Laser-assisted charge-transfer reactions (Li3++H): Coupled dressed-quasimolecular-state approach. Physical Review A, 1985, 32, 122-133.	:/mml:msup 2.5	p>

#	ARTICLE Above- and below-threshold high-order-harmonic generation of < mml:math	IF	Citations
73	xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mrow></mml:mrow><mml:mo>+</mml:mo>++<mml:mrow< td=""><td>2.5</td><td>29</td></mml:mrow<></mml:msup></mml:mrow>	2.5	29
74	Study of the autoionising states of the hydrogen atom in intense magnetic fields by the complex coordinate coupled-channel formalism. Journal of Physics B: Atomic and Molecular Physics, 1983, 16, L471-L477.	1.6	27
75	Density matrix formulation of complex geometric quantum phases in dissipative systems. Chemical Physics Letters, 1989, 157, 151-158.	2.6	26
76	Effects of macroscopic propagation on spectra of broadband supercontinuum harmonics and isolated-attosecond-pulse generation: Coherent control of the electron quantum trajectories in two-color laser fields. Physical Review A, 2012, 86, .	2.5	26
77	Spectral and temporal structures of high-order harmonic generation of Na in intense mid-ir laser fields. Physical Review A, 2001, 64, .	2.5	25
78	Nonperturbative treatments of level shifts of excited states and high-order harmonic generation in strong fields. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 425.	2.1	24
79	Mechanism of quasi-phase-matching in a dual-gas multijet array. Physical Review A, 2012, 86, .	2.5	24
80	Photoelectron momentum distributions of the hydrogen atom driven by multicycle elliptically polarized laser pulses. Physical Review A, $2016, 93, .$	2.5	24
81	Above-threshold multiphoton detachment from theHâ^'ion by 10.6-μm radiation: Angular distributions and partial widths. Physical Review A, 1994, 50, 4099-4108.	2.5	23
82	Above-threshold multiphoton detachment of Hâ^' by two-color laser fields: Angular distributions and partial rates. Physical Review A, 1995, 51, 4797-4808.	2.5	22
83	Quantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton ionization and high-order harmonic generation of He and Ne atoms in intense laser fields. Physical Review A, 2002, 65, .	2.5	22
84	Spin-dependent localized Hartree-Fock density-functional calculation of singly, doubly, and triply excited and Rydberg states of He- and Li-like ions. Physical Review A, 2005, 71, .	2.5	22
85	Fast-kick-off monotonically convergent algorithm for searching optimal control fields. Physical Review A, 2011, 84, .	2.5	22
86	Coherent control of the electron quantum paths for the generation of single ultrashort attosecond laser pulse. Physical Review A, 2011, 84, .	2.5	21
87	A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: Synchrosqueezing transform. AIP Advances, 2014, 4, 117138.	1.3	21
88	Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ï‰ , 2ï‰) counter-rotating laser fields. Physical Review A, 2018, 97, .	2.5	21
89	A stationary treatment of time-dependent Hamiltonian by the many-mode floquet formalism and its application to the study of effects of laser pulses in multiphoton processes. Chemical Physics Letters, 1994, 225, 46-54.	2.6	20
90	Effect of nuclear vibration on high-order-harmonic generation of aligned <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msub>H<mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mo>+</mml:mo> Physical Review A, 2014, 90, .</mml:msup></mml:math>	<td>ıp>²⁰mml:mat</td>	ıp> ²⁰ mml:mat

#	Article	IF	CITATIONS
91	Rotational excitation of symmetric-top molecular ions by electron impact. Physical Review A, 1975, 12, 396-405.	2.5	19
92	Semiclassical theory of vibrational collisions in a laser field. Chemical Physics Letters, 1980, 70, 205-209.	2.6	19
93	Electron angular distributions after above-threshold multiphoton detachment of by 1064 nm radiation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 4401-4410.	1.5	19
94	Multiphoton above-threshold detachment ofLiâ^':Exterior-complex-scalingâ€" generalized-pseudospectral method for calculations of complex-quasienergy resonances in Floquet formulation of time-dependent density-functional theory. Physical Review A, 2002, 66, .	2.5	19
95	Suppression of energy-relaxation-induced decoherence inl̂-type three-level SQUID flux qubits: A dark-state approach. Physical Review B, 2004, 70, .	3.2	19
96	<i>Ab initio</i> time-dependent density-functional-theory study of the frequency comb structure, coherence, and dephasing of multielectron systems in the vuv-xuv regimes via high-order harmonic generation. Physical Review A, 2009, 79, .	2.5	19
97	Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation. Scientific Reports, 2016, 6, 32763.	3.3	19
98	Quasienergy formalism for photoionization in intense radiation and magnetic fields. Chemical Physics Letters, 1979, 64, 178-182.	2.6	18
99	Complex scaling method for numerical potentials. Chemical Physics Letters, 1982, 87, 357-364.	2.6	18
100	Nonlinear Schrödinger equation and dissipative quantum dynamics in periodic fields. Physical Review A, 1989, 40, 4171-4181.	2.5	18
101	Chemical bond hardening and molecular stabilization of D+2 in one- and two-color laser fields. Chemical Physics Letters, 1994, 227, 663-668.	2.6	18
102	Generation of below-threshold even harmonics by a stretchedH2+molecular ion in intense linearly and circularly polarized laser fields. Physical Review A, 2015, 92, .	2.5	18
103	Photoionization dynamics and angular squeezing phenomenon in intense long-wavelength laser fields. Physical Review A, 2011, 83, .	2.5	17
104	Time-dependent approach to high-resolution spectroscopy: application to the photoabsorption spectrum of classically chaotic hydrogen atoms in magnetic fields. Chemical Physics Letters, 1998, 294, 31-36.	2.6	16
105	Generalized Floquet formulation of time-dependent current-density-functional theory. Physical Review A, 1998, 58, 4749-4756.	2.5	16
106	Angular distributions from two-photon detachment of Hâ^'near ionization threshold: Laser-frequency and -intensity effects. Physical Review A, 2002, 66, .	2.5	16
107	<i>Ab initio</i> theoretical investigation of the frequency comb structure and coherence in the vuv-xuv regimes via high-order harmonic generation. Physical Review A, 2008, 77, .	2.5	16
108	Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields. Physical Review A, 2008, 77, .	2.5	16

#	Article	IF	CITATIONS
109	Multiphoton above-threshold ionization in superintense free-electron x-ray laser fields: Beyond the dipole approximation. Physical Review A, 2013, 87, .	2.5	16
110	Body-fixed complex-coordinate coupled-channel formalism for rotational predissociation of van der Waals molecules. Chemical Physics Letters, 1982, 88, 213-219.	2.6	15
111	Pressure Broadening and Laser-Induced Spectral Line Shapes. Advances in Atomic and Molecular Physics, 1989, 25, 133-162.	2.0	15
112	Nonperturbative methods for the study of multiphoton dynamics in intense periodic and multi-color laser fields. Computer Physics Communications, 1991, 63, 482-493.	7. 5	15
113	Very-high-order harmonic generation from Ar atoms and Ar+ions in superintense pulsed laser fields: Anab initioself-interaction-free time-dependent density-functional approach. Physical Review A, 2005, 71, .	2.5	15
114	High-order harmonic generation in laser-irradiated homonuclear diatomics: The velocity gauge version of the molecular strong-field approximation. Laser Physics, 2006, 16, 1326-1344.	1.2	15
115	Exploration of strong-field multiphoton double ionization, rescattering, and electron angular distribution of He atoms in intense long-wavelength laser fields: The coupled coherent-state approach. Physical Review A, 2010, 82, .	2.5	15
116	Exploration of the subcycle multiphoton ionization dynamics and transient electron density structures with Bohmian trajectories. Physical Review A, 2015, 91, .	2.5	15
117	Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields. Physical Review A, 2017, 96, .	2.5	15
118	Dynamics of multiphoton excitation and quantum diffusion in Rydberg atoms. Physical Review A, 1989, 39, 1800-1808.	2.5	14
119	High-order-harmonic generation of Ar atoms in intense ultrashort laser fields: An all-electron time-dependent density-functional approach including macroscopic propagation effects. Physical Review A, 2013, 88, .	2.5	14
120	Time-dependent density-functional theory with optimized effective potential and self-interaction correction and derivative discontinuity for the treatment of double ionization of He and Be atoms in intense laser fields. Physical Review A, 2013, 87, .	2.5	14
121	Unravelling the dynamical origin of below- and near-threshold harmonic generation of H2+ in an intense NIR laser field. Scientific Reports, 2016, 6, 37774.	3.3	14
122	Enhancement of VUV and EUV generation by field-controlled resonance structures of diatomic molecules. Physical Review A, 2016, 93, .	2.5	14
123	Absorption spectra of superconducting qubits driven by bichromatic microwave fields. Physical Review B, 2017, 96, .	3.2	14
124	Time-Local Equation for the Exact Optimized Effective Potential in Time-Dependent Density Functional Theory. Physical Review Letters, 2017, 118, 243001.	7.8	14
125	Time-dependent density-functional theory with optimized effective potential and self-interaction correction: Application to the study of coherent control of multiple high-order harmonic generation of He atoms in mixed laser fields. International Journal of Quantum Chemistry, 1998, 69, 293-303.	2.0	13
126	Quantum fluid dynamics approach for electronic structure calculation: application to the study of ground-state properties of rare gas atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2075-2086.	1.5	13

#	Article	IF	CITATIONS
127	Generation of an isolated few-attosecond pulse in optimized inhomogeneous two-color fields. Physical Review A, 2015, 92, .	2.5	13
128	Multiphoton dynamics and resonance lineshapes in three-level systems: many-mode Floquet treatment. Journal of Physics B: Atomic and Molecular Physics, 1985, 18, 4539-4556.	1.6	12
129	High-order above-threshold multiphoton detachment of HÂ: time-dependent non-Hermitian Floquet approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 1489-1502.	1.5	12
130	Memory effect on the multiphoton coherent destruction of tunneling in the electron transport of nanoscale systems driven by a periodic field: A generalized Floquet approach. Physical Review B, 2009, 79, .	3.2	12
131	A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices. Europhysics Letters, 2009, 88, 17008.	2.0	12
132	Subcycle transient structures in time-dependent multiphoton-ionization rates. Physical Review A, 2014, 90, .	2.5	12
133	A graph-theoretical representation of multiphoton resonance processes in superconducting quantum circuits. Scientific Reports, 2016, 6, 37544.	3.3	12
134	Harmonic generation of Li atoms in one- and two-photon Rabi-flopping regimes. Physical Review A, 2016, 94, .	2.5	12
135	Strong field effects in above-threshold detachment of a model negative ion. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 363-376.	1.5	11
136	Theoretical study of the energy spectra of multiphoton above-threshold dissociation of H2+ in intense laser fields. Chemical Physics Letters, 1996, 255, 223-231.	2.6	11
137	Generalized Floquet theoretical formulation of time-dependent density functional theory for many-electron systems in multicolor laser fields. International Journal of Quantum Chemistry, 1998, 69, 305-315.	2.0	11
138	Exact relations of the quasienergy functional and the exchange-correlation potential from the Floquet formulation of time-dependent density functional theory. Physical Review A, 2000, 63, .	2.5	11
139	Time-frequency analysis of molecular high-harmonic generation spectrum by means of wavelet transform and Wigner distribution techniques. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4747-4758.	1.5	11
140	Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach. Physical Review A, 2017, 95, .	2.5	11
141	Transient absorption spectra of the laser-dressed hydrogen atom. Physical Review A, 2013, 88, .	2.5	10
142	Subcycle dynamics of high-harmonic generation in valence-shell and virtual states of Ar atoms: A self-interaction-free time-dependent density-functional-theory approach. Physical Review A, 2015, 91, .	2.5	10
143	High-order-harmonic generation by Laguerre-Gaussian laser modes: Control of the spectra by manipulating the spatial medium distribution. Physical Review A, 2017, 96, .	2.5	10
144	Conditions for perfect circular polarization of high-order harmonics driven by bichromatic counter-rotating laser fields. Physical Review A, 2019, 99, .	2.5	10

#	Article	IF	Citations
145	Rotational predissociation of Ar—HD van der Waals complex: space-fixed complex-coordinate coupled-channel calculations. Chemical Physics Letters, 1983, 95, 38-45.	2.6	9
146	Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator. Physical Review A, 2011, 84, .	2.5	9
147	Coherent control and giant enhancement of multiphoton ionization and high-order-harmonic generation driven by intense frequency-comb laser fields: Anab initiotheoretical investigation. Physical Review A, 2013, 87, .	2.5	9
148	Subcycle dynamics of high-order-harmonic generation of He atoms excited by attosecond pulses and driven by near-infrared laser fields: A self-interaction-free time-dependent density-functional-theory approach. Physical Review A, 2014, 89, .	2.5	9
149	Floquet-liouville super-matrix approach for multiphoton non-linear optical processes in intense laser fields. Chemical Physics Letters, 1985, 122, 327-332.	2.6	8
150	High-order perturbation expansion of non-Hermitian Floquet theory for multiphoton and above-threshold ionization processes. Physical Review A, 1999, 61, .	2.5	8
151	Spin-dependent localized Hartree-Fock density-functional approach for the accurate treatment of inner-shell excitation of closed-shell atoms. Physical Review A, 2007, 75, .	2.5	8
152	Photoelectron momentum distributions of the hydrogen molecular ion driven by multicycle near-infrared laser pulses. Physical Review A, 2016, 94, .	2.5	8
153	Probing multirescattering dynamics and electron quantum paths for below- and near-threshold harmonic generation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> in an intense laser	2.5	8
154	Multiphoton Ionization of One-Electron Relativistic Diatomic Quasimolecules in Strong Laser Fields. Journal of Physical Chemistry A, 2018, 122, 8026-8036.	2.5	8
155	Relativistic ionization dynamics of hydrogenlike ions in strong electromagnetic fields: Generalized pseudospectral method for the time-dependent Dirac equation. Physical Review A, 2020, 102, .	2.5	8
156	Role of nuclear symmetry in below-threshold harmonic generation of molecules. Physical Review A, 2020, 101, .	2.5	8
157	Exploration of the electron multiple recollision dynamics in intense laser fields with Bohmian trajectories. Physical Review A, 2016, 93, .	2.5	7
158	Nonlinear Multiâ€Photon Excitation and Dissociation in Intense Laser Fields: Recent Developments in Floquet Theory and Quasiâ€Energy Methods. Israel Journal of Chemistry, 1984, 24, 237-244.	2.3	6
159	Unified approach for universal quantum gates in a coupled superconducting two-qubit system with fixed always-on coupling. Physical Review B, 2006, 73, .	3.2	6
160	<i>Ab initio</i> study of high-lying doubly excited states of helium in static electric fields: Complex-scaling generalized pseudospectral method in hyperspherical coordinates. Physical Review A, 2012, 86, .	2.5	6
161	Coherent control of atomic spin currents in a double well. Physical Review A, 2012, 85, .	2.5	6
162	DYNAMICS AND SYMMETRIES IN INTENSE MULTIPHOTON PROCESSES: FLOQUET THEORETICAL APPROACHES. Advances in Multi-photon Processes and Spectroscopy, 1986, , 175-237.	0.6	5

#	Article	IF	Citations
163	Fractal character of quasi-energy states in intense polychromatic fields. Chemical Physics Letters, 1988, 153, 87-92.	2.6	5
164	Time-dependent multiphoton dynamics in intense short-pulse laser fields. Interaction-representation approach. Chemical Physics Letters, 1992, 198, 39-42.	2.6	5
165	Two-photon detachment of Hâ^'. Physical Review A, 2000, 61, .	2.5	5
166	Quantum Entanglement and Controlled Logical Gates Using Coupled SQUID Flux Qubits. IEEE Transactions on Applied Superconductivity, 2005, 15, 833-836.	1.7	5
167	Inner-shell excitation of open-shell atoms: a spin-dependent localized Hartree–Fock density-functional approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 4379-4389.	1.5	5
168	Time-dependent localized Hartree-Fock density-functional linear response approach for photoionization of atomic excited states. Physical Review A, 2009, 79, .	2.5	5
169	The complex scaling method: Application to autoionization, predissociation, and multiphoton resonances. International Journal of Quantum Chemistry, 1986, 30, 129-146.	2.0	4
170	Exact-exchange optimized effective potential and memory effect in time-dependent density functional theory. European Physical Journal B, 2018, 91, 1.	1.5	4
171	Minima in low-energy above-threshold-ionization spectra induced by electronic structure. Physical Review A, 2019, 100, .	2.5	4
172	Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields*. Chinese Physics B, 2020, 29, 083202.	1.4	4
173	Time evolution and multiphoton ionization of Rydberg wavepacket in microwave fields. Chemical Physics Letters, 1995, 240, 278-282.	2.6	3
174	Nonperturbative Approaches to Atomic and Molecular Multiphoton (Half-Collision) Processes in Intense Laser Fields. The IMA Volumes in Mathematics and Its Applications, 1997, , 343-387.	0.5	3
175	Exploration of Coulomb explosion dynamics through excited vibrational states of molecules. Physical Review A, 2005, 71, .	2.5	3
176	Relaxation and Decoherence Induced by an External Circuit of a Driven SQUID Flux Qubit. IEEE Transactions on Applied Superconductivity, 2007, 17, 90-93.	1.7	2
177	Generation and coherent control of even-order harmonics driven by intense frequency-comb and cavity-mode fields inside a fsEC. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 145403.	1.5	2
178	THEORETICAL FOUNDATIONS FOR EXPLORING QUANTUM OPTIMAL CONTROL OF MOLECULES. Advances in Multi-photon Processes and Spectroscopy, 2014, , 1-57.	0.6	2
179	Multichannel-resolved dynamics in resonance-enhanced below-threshold harmonic generation of H2+ molecular ions. Physical Review A, 2021, 103, .	2.5	2
180	Timeâ€dependent densityâ€functional theory with optimized effective potential and selfâ€interaction correction: Application to the study of coherent control of multiple highâ€order harmonic generation of He atoms in mixed laser fields. International Journal of Quantum Chemistry, 1998, 69, 293-303.	2.0	2

#	Article	IF	CITATIONS
181	Time-dependent self-consistent field approach to infrared laser multiphoton excitation. Chemical Physics Letters, 1987, 139, 35-40.	2.6	1
182	Generalized Floquet theoretical methods for nonperturbative treatments of Schrodinger and Liouville equations in the presence of strong fields. Radiation Effects and Defects in Solids, 1994, null, 57-71.	1.2	1
183	Laserâ€Induced Stabilization in Atomic and Molecular Systems. Journal of the Chinese Chemical Society, 1995, 42, 325-333.	1.4	1
184	Recent New Developments of Steadyâ€State and Timeâ€Dependent Density Functional Theories for the Treatment of Structure and Dynamics of Manyâ€Electron Atomic, Molecular, and Quantum Dot Systems. Journal of the Chinese Chemical Society, 1999, 46, 361-374.	1.4	1
185	Effects of pulse shape on rf SQUID quantum gates. IEEE Transactions on Applied Superconductivity, 2003, 13, 986-988.	1.7	1
186	A small error-correction code for protecting three-qubit quantum information. JETP Letters, 2004, 79, 236-240.	1.4	1
187	Probing time-resolved emission in laser-driven electron-multirescattering in a high-order harmonic generation. Journal of Modern Optics, 2019, 66, 541-547.	1.3	1
188	Relativistic ionization probabilities and photoelectron distributions of hydrogenlike ions in superstrong electromagnetic fields. Physical Review A, 2021, 104, .	2.5	1
189	Time-dependent density-functional theory with optimized effective potential and self-interaction correction: Application to the study of coherent control of multiple high-order harmonic generation of He atoms in mixed laser fields., 1998, 69, 293.		1
190	ATOMIC AND MOLECULAR MULTIPHOTON PROCESSES IN INTENSE LASER FIELDS. , 1993, , 403-440.		1
191	Study of the photoabsorption spectrum of diamagnetic Rydberg atoms without the need of using full eigenvectors. Chemical Physics Letters, 1993, 211, 601-606.	2.6	0
192	Nonadiabatic geometric phases of multiphoton transitions in dissipative systems and spin- <i>J</i> systems. Radiation Effects and Defects in Solids, 1994, null, 73-89.	1.2	0
193	Generalized Floquet formulation of time-dependent density functional theory for many-electron systems in intense laser fields. AIP Conference Proceedings, 2000, , .	0.4	0
194	Generalized Floquet Formulation of Timeâ€Dependent Density Functional Theory for Multiphoton Processes in Intense Laser Fields. Journal of the Chinese Chemical Society, 2002, 49, 737-750.	1.4	0
195	EXPLORATION OF THE MEMORY EFFECT ON THE PHOTON-ASSISTED TUNNELING VIA A SINGLE QUANTUM DOT: A GENERALIZED FLOQUET THEORETICAL APPROACH. International Journal of Modern Physics B, 2011, 25, 2251-2270.	2.0	0
196	Semiclassical Multi-Mode Floquet Theory and Non-Adiabatic Approximation Quasi-Energy Method for Intense Field Multiphoton Processes. , 1984, , 1141-1146.		0
197	The Complex-Scaling Coupled-Channel Methods for Atomic and Molecular Resonances in Intense External Fields., 1992,, 193-212.		0