
Christopher M Quick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2500527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Researchâ€Intensive Community Model has the Necessary Properties for Successful Propagation at Researchâ€Extensive Universities. FASEB Journal, 2022, 36, .	0.2	Ο
2	Verticallyâ€Integrated Courseâ€Based Undergraduate Research Experiences (CUREs) Structure a Biomedical Research Certificate Program that Promotes Inclusivity. FASEB Journal, 2022, 36, .	0.2	2
3	Algebraic formulas characterizing an alternative to Guyton's graphical analysis relevant for heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R851-R870.	0.9	0
4	Adaptation of the hepatic transudation barrier to sinusoidal hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R722-R729.	0.9	1
5	Hepatic transudation barrier properties. Microcirculation, 2018, 25, e12424.	1.0	4
6	Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R522-R531.	0.9	3
7	The complex distribution of arterial system mechanical properties, pulsatile hemodynamics, and vascular stresses emerges from three simple adaptive rules. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H407-H415.	1.5	7
8	Functional adaptation of bovine mesenteric lymphatic vessels to mesenteric venous hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R901-R907.	0.9	8
9	Blood flow augmentation by intrinsic venular contraction in vivo. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1436-R1442.	0.9	18
10	Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H116-H125.	1.5	5
11	AWARD ARTICLE: Microcirculatory Society Award for Excellence in Lymphatic ResearchTime Course of Myocardial Interstitial Edema Resolution and Associated Left Ventricular Dysfunction. Microcirculation, 2012, 19, 714-722.	1.0	19
12	Nonlinear lymphangion pressure-volume relationship minimizes edema. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H876-H882.	1.5	13
13	Lymphatic pump-conduit duality: contraction of postnodal lymphatic vessels inhibits passive flow. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H662-H668.	1.5	34
14	Optimal postnodal lymphatic network structure that maximizes active propulsion of lymph. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H303-H309.	1.5	10
15	Venomotion modulates lymphatic pumping in the bat wing. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H2015-H2021.	1.5	8
16	The Origin of the Biphasic Flow Response to Local Heat in Skin. Microcirculation, 2008, 15, 349-357.	1.0	7
17	Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2428-H2434.	1.5	84
18	Integrating research and education at research-extensive universities with research-intensive communities. American Journal of Physiology - Advances in Physiology Education, 2008, 32, 136-141.	0.8	65

#	Article	IF	CITATIONS
19	First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2144-H2149.	1.5	27
20	Functional and Molecular Adaptation of Lymphatic Vessels. FASEB Journal, 2008, 22, 392.2.	0.2	0
21	Intrinsic pump-conduit behavior of lymphangions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1510-R1518.	0.9	98
22	Lymphangion coordination minimally affects mean flow in lymphatic vessels. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1183-H1189.	1.5	51
23	Increase in pulse wavelength causes the systemic arterial tree to degenerate into a classical windkessel. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1164-H1171.	1.5	24
24	Lymphatic vessels transition to state of summation above a critical contraction frequency. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R200-R208.	0.9	12
25	Isoflurane produces edema in the bat wing via arteriolar dilation and lymphatic pump inhibition. FASEB Journal, 2007, 21, A492.	0.2	1
26	Transmural flow modulates the lymphatic myogenic response in bovine mesenteric lymphatic vessels. FASEB Journal, 2007, 21, A493.	0.2	0
27	Resolving the Hemodynamic Inverse Problem. IEEE Transactions on Biomedical Engineering, 2006, 53, 361-368.	2.5	30
28	Image-based evaluation of video-acquired research skills. , 2006, , .		0
29	Pulmonary Air Embolization Inhibits Lung Lymph Flow by Increasing Lymphatic Outflow Pressure. Lymphatic Research and Biology, 2006, 4, 18-22.	0.5	7
30	The arterial system pressure–volume loop. Physiological Measurement, 2005, 26, N29-N35.	1.2	5
31	Effect of Venous Air Embolization on Pulmonary Microvascular Protein Permeability. Microcirculation, 2004, 11, 409-414.	1.0	4
32	Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. American Journal of Neuroradiology, 2003, 24, 1804-10.	1.2	88
33	Relationship of nidal vessel radius and wall thickness to brain arteriovenous malformation hemorrhage. Neurological Research, 2002, 24, 495-500.	0.6	3
34	Adaptation of Cerebral Circulation to Brain Arteriovenous Malformations Increases Feeding Artery Pressure and Decreases Regional Hypotension. Neurosurgery, 2002, 50, 167-175.	0.6	20
35	Increased Cerebral Blood Flow After Brain Arteriovenous Malformation Resection Is Substantially Independent of Changes in Cardiac Output. Journal of Neurosurgical Anesthesiology, 2002, 14, 204-208.	0.6	10
36	Adaptation of Cerebral Circulation to Brain Arteriovenous Malformations Increases Feeding Artery Pressure and Decreases Regional Hypotension. Neurosurgery, 2002, 50, 167-175.	0.6	11

#	Article	IF	CITATIONS
37	Arterial pulse wave reflection as feedback. IEEE Transactions on Biomedical Engineering, 2002, 49, 440-445.	2.5	8
38	Constructive and destructive addition of forward and reflected arterial pulse waves. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1519-H1527.	1.5	45
39	Infinite number of solutions to the hemodynamic inverse problem. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1472-H1479.	1.5	33
40	Evidence of Increased Endothelial Cell Turnover in Brain Arteriovenous Malformations. Neurosurgery, 2001, 49, 124-132.	0.6	79
41	Evidence of Increased Endothelial Cell Turnover in Brain Arteriovenous Malformations. Neurosurgery, 2001, 49, 124-132.	0.6	74
42	Lack of flow regulation may explain the development of arteriovenous malformations. Neurological Research, 2001, 23, 641-644.	0.6	30
43	Abnormal Pattern of Tie-2 and Vascular Endothelial Growth Factor Receptor Expression in Human Cerebral Arteriovenous Malformations. Neurosurgery, 2000, 47, 910-919.	0.6	118
44	True Arterial System Compliance Estimated From Apparent Arterial Compliance. Annals of Biomedical Engineering, 2000, 28, 291-301.	1.3	31
45	Model of structural and functional adaptation of small conductance vessels to arterial hypotension. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1645-H1653.	1.5	23
46	Apparent arterial compliance. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1393-H1403.	1.5	44
47	Ejection has both positive and negative effects on left ventricular isovolumic relaxation. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2696-H2707.	1.5	4