Martin SchrĶn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2500029/publications.pdf Version: 2024-02-01

ΜΑΡΤΙΝ SCHPÃON

#	Article	IF	CITATIONS
1	Footprint characteristics revised for fieldâ€scale soil moisture monitoring with cosmicâ€ray neutrons. Water Resources Research, 2015, 51, 5772-5790.	4.2	189
2	MODELING JET AND OUTFLOW FEEDBACK DURING STAR CLUSTER FORMATION. Astrophysical Journal, 2014, 790, 128.	4.5	139
3	Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins. Journal of Hydrometeorology, 2016, 17, 287-307.	1.9	120
4	Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrology and Earth System Sciences, 2017, 21, 5009-5030.	4.9	93
5	Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing. Journal of Hydrology, 2018, 564, 873-887.	5.4	60
6	Computationally inexpensive identification of noninformative model parameters by sequential screening. Water Resources Research, 2015, 51, 6417-6441.	4.2	54
7	Cosmicâ€ray Neutron Rover Surveys of Field Soil Moisture and the Influence of Roads. Water Resources Research, 2018, 54, 6441-6459.	4.2	53
8	The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory. Bulletin of the American Meteorological Society, 2017, 98, 1217-1234.	3.3	49
9	Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sensing, 2019, 11, 2356.	4.0	46
10	Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7, 83-99.	1.6	44
11	A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany. Earth System Science Data, 2020, 12, 2289-2309.	9.9	44
12	COLLECTIVE OUTFLOW FROM A SMALL MULTIPLE STELLAR SYSTEM. Astrophysical Journal, 2014, 788, 14.	4.5	35
13	Error Estimation for Soil Moisture Measurements With Cosmic Ray Neutron Sensing and Implications for Rover Surveys. Frontiers in Water, 2020, 2, .	2.3	33
14	COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 2022, 14, 1125-1151.	9.9	33
15	Synergies for Soil Moisture Retrieval Across Scales From Airborne Polarimetric SAR, Cosmic Ray Neutron Roving, and an In Situ Sensor Network. Water Resources Research, 2018, 54, 9364-9383.	4.2	32
16	Response functions for detectors in cosmic ray neutron sensing. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 902, 184-189.	1.6	31
17	Sensing Areaâ€Average Snow Water Equivalent with Cosmicâ€Ray Neutrons: The Influence of Fractional Snow Cover. Water Resources Research, 2019, 55, 10796-10812.	4.2	30
18	Soil Moisture and Air Humidity Dependence of the Above-Ground Cosmic-Ray Neutron Intensity. Frontiers in Water, 2021, 2, .	2.3	29

Martin SchrĶn

#	ARTICLE	IF	CITATIONS
19	Can Drip Irrigation be Scheduled with Cosmicâ€Ray Neutron Sensing?. Vadose Zone Journal, 2019, 18, 190053.	2.2	22
20	Neutrons on Rails: Transregional Monitoring of Soil Moisture and Snow Water Equivalent. Geophysical Research Letters, 2021, 48, .	4.0	14
21	Spatio-temporal soil moisture retrieval at the catchment scale using a dense network of cosmic-ray neutron sensors. Hydrology and Earth System Sciences, 2021, 25, 4807-4824.	4.9	12
22	Towards disentangling heterogeneous soil moisture patterns in cosmic-ray neutron sensor footprints. Hydrology and Earth System Sciences, 2021, 25, 6547-6566.	4.9	12
23	Monitoring Environmental Water with Ground Albedo Neutrons from Cosmic Rays. , 2016, , .		11
24	Accuracy and precision of the cosmicâ€ray neutron sensor for soil moisture estimation at humid environments. Hydrological Processes, 2021, 35, e14419.	2.6	11
25	Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site WA¼stebach. Earth System Science Data, 2022, 14, 2501-2519.	9.9	9
26	Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture. Geoscientific Instrumentation, Methods and Data Systems, 2022, 11, 75-92.	1.6	7
27	An environmental exploration system for visual scenario analysis of regional hydro-meteorological systems. Computers and Graphics, 2022, 103, 192-200.	2.5	4
28	Field-Scale Assessment of Multi-Sensor Soil Moisture Retrieval Under Grassland. , 2018, , .		2
29	Editorial: Innovative Methods for Non-invasive Monitoring of Hydrological Processes From Field to Catchment Scale. Frontiers in Water, 2021, 3, .	2.3	0