Khadijeh S Alnajjar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499854/publications.pdf

Version: 2024-02-01

KHADHEH S ALNAHAD

#	Article	IF	CITATIONS
1	A Collapsed Fingers Subdomain is the Basis for DNA Polymerase \hat{I}^2 I260M Mutator Activity. FASEB Journal, 2022, 36, .	0.2	0
2	The role of cysteines in the structure and function of OGG1. Journal of Biological Chemistry, 2021, 296, 100093.	1.6	26
3	Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β. Journal of Biological Chemistry, 2020, 295, 1613-1622.	1.6	5
4	Revealing an Internal Stabilization Deficiency in the DNA Polymerase β K289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography. Biochemistry, 2020, 59, 955-963.	1.2	0
5	A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair, 2019, 76, 60-69.	1.3	28
6	Synthesis of ortho-formylphenylphosphonic acids as covalent probes of active site lysines. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 313-314.	0.8	1
7	A pre-catalytic non-covalent step governs DNA polymerase β fidelity. Nucleic Acids Research, 2019, 47, 11839-11849.	6.5	4
8	l260Q DNA polymerase β highlights precatalytic conformational rearrangements critical for fidelity. Nucleic Acids Research, 2018, 46, 10740-10756.	6.5	8
9	The nature of the DNA substrate influences pre-catalytic conformational changes of DNA polymerase β. Journal of Biological Chemistry, 2018, 293, 15084-15094.	1.6	7
10	Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry, 2018, 57, 3925-3933.	1.2	18
11	Mitochondrial Electron Transport. , 2018, , 1-8.		О
12	A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase \hat{l}^2 Cancer-Associated Variant. Biochemistry, 2017, 56, 2096-2105.	1.2	16
13	Defective Nucleotide Release by DNA Polymerase β Mutator Variant E288K Is the Basis of Its Low Fidelity. Biochemistry, 2017, 56, 5550-5559.	1.2	11
14	DNA Polymerase β Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the β–γ Bridging Group of the Incoming dNTP. Biochemistry, 2017, 56, 5449-5456.	1.2	7
15	Base Excision Repair in the Etiology of Lupus and Cancer. , 2017, , 449-499.		0
16	Role of Phospholipids of Subunit III in the Regulation of Structural Rearrangements in Cytochrome <i>c</i> Oxidase of <i>Rhodobacter sphaeroides</i> . Biochemistry, 2015, 54, 1053-1063.	1.2	6
17	Phospholipids in Subunit III Regulate Structural Rearrangements in Cytochrome <i>c</i> Oxidase of <i>Rhodobacter sphaeroides</i> . FASEB Journal, 2015, 29, 884.1.	0.2	0
18	Role of the N-Terminus of Subunit III in Proton Uptake in Cytochrome <i>c</i> Oxidase of <i>Rhodobacter sphaeroides</i> . Biochemistry, 2014, 53, 496-504.	1.2	11

#	Article	IF	CITATIONS
19	Removal of Endogenous Phospholipids of Rhodobacter Sphaeroides Cytochrome C Oxidase affects the Flexibility of the Enzyme. Biophysical Journal, 2014, 106, 371a.	0.2	0
20	The Role of the N-Terminus of Subunit III in Proton Uptake in Cytochrome C Oxidase of Rhodobacter sphaeroides. Biophysical Journal, 2013, 104, 487a.	0.2	3
21	Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment. Journal of Chemical Education, 2012, 89, 286-290.	1.1	57
22	Expression and immunolocalization of aquaporins HC-1, -2, and -3 in Cope's gray treefrog, Hyla chrysoscelis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 157, 86-94.	0.8	21