
Jana Sillmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499790/publications.pdf Version: 2024-02-01

IANA SILLMANN

#	Article	IF	CITATIONS
1	Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1716-1733.	1.2	1,131
2	Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2473-2493.	1.2	1,126
3	Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 2015, 10, 124003.	2.2	418
4	Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 2019, 9, 16063.	1.6	393
5	Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,500.	1.2	390
6	Blocking and its Response to Climate Change. Current Climate Change Reports, 2018, 4, 287-300.	2.8	273
7	Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10, 1074-1084.	8.1	245
8	Indices for extreme events in projections of anthropogenic climate change. Climatic Change, 2008, 86, 83-104.	1.7	238
9	Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 2020, 29, 100269.	1.6	211
10	Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 2016, 137, 201-216.	1.7	197
11	Extreme Cold Winter Temperatures in Europe under the Influence of North Atlantic Atmospheric Blocking. Journal of Climate, 2011, 24, 5899-5913.	1.2	196
12	Understanding, modeling and predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 2017, 18, 65-74.	1.6	178
13	Humid heat waves at different warming levels. Scientific Reports, 2017, 7, 7477.	1.6	176
14	Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ and Reanalysis Datasets. Journal of Climate, 2014, 27, 5019-5035.	1.2	156
15	When will unusual heat waves become normal in a warming Africa?. Environmental Research Letters, 2016, 11, 054016.	2.2	156
16	The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geoscientific Model Development, 2015, 8, 3379-3392.	1.3	140
17	Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophysical Research Letters, 2009, 36, .	1.5	132
18	Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environmental Research Letters, 2016, 11, 024005.	2.2	116

JANA SILLMANN

#	Article	IF	CITATIONS
19	PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results. Bulletin of the American Meteorological Society, 2017, 98, 1185-1198.	1.7	116
20	Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles. Environmental Research Letters, 2018, 13, 054015.	2.2	111
21	Evaluation of the Large EURO ORDEX Regional Climate Model Ensemble. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032344.	1.2	109
22	Assessment of the European Climate Projections as Simulated by the Large EURO ORDEX Regional and Global Climate Model Ensemble. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032356.	1.2	104
23	Half a degree and rapid socioeconomic development matter for heatwave risk. Nature Communications, 2019, 10, 136.	5.8	85
24	A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and Regional Precipitation. Journal of Climate, 2018, 31, 4429-4447.	1.2	83
25	Dependence of Present and Future European Temperature Extremes on the Location of Atmospheric Blocking. Geophysical Research Letters, 2018, 45, 6311-6320.	1.5	80
26	A multimodel examination of climate extremes in an idealized geoengineering experiment. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3900-3923.	1.2	75
27	Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nature Communications, 2016, 7, 11236.	5.8	75
28	Eventâ€Based Storylines to Address Climate Risk. Earth's Future, 2021, 9, e2020EF001783.	2.4	74
29	Heat Stress Indicators in CMIP6: Estimating Future Trends and Exceedances of Impactâ€Relevant Thresholds. Earth's Future, 2021, 9, e2020EF001885.	2.4	71
30	Economic costs of heat-induced reductions in worker productivity due to global warming. Global Environmental Change, 2020, 63, 102087.	3.6	64
31	Observed and simulated temperature extremes during the recent warming hiatus. Environmental Research Letters, 2014, 9, 064023.	2.2	60
32	Climate emergencies do not justify engineering the climate. Nature Climate Change, 2015, 5, 290-292.	8.1	57
33	The Influence of Atmospheric Blocking on Extreme Winter Minimum Temperatures in North America. Journal of Climate, 2016, 29, 4361-4381.	1.2	53
34	Better seasonal forecasts for the renewable energy industry. Nature Energy, 2020, 5, 108-110.	19.8	49
35	Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160450.	1.6	46
36	Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe. Economics of Disasters and Climate Change, 2019, 3, 191-211.	1.3	46

JANA SILLMANN

#	Article	IF	CITATIONS
37	A multi-model comparison of meteorological drivers of surface ozone over Europe. Atmospheric Chemistry and Physics, 2018, 18, 12269-12288.	1.9	42
38	Future changes in atmospheric rivers and extreme precipitation in Norway. Climate Dynamics, 2020, 54, 2071-2084.	1.7	41
39	Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 2018, 18, 8439-8452.	1.9	40
40	The Changing Seasonality of Extreme Daily Precipitation. Geophysical Research Letters, 2018, 45, 11,352.	1.5	37
41	Aerosol effect on climate extremes in Europe under different future scenarios. Geophysical Research Letters, 2013, 40, 2290-2295.	1.5	34
42	Assessment of an extended version of the Jenkinson–Collison classification on CMIP5 models over Europe. Climate Dynamics, 2018, 50, 1559-1579.	1.7	34
43	Climate change effects on hydrometeorological compound events over southern Norway. Weather and Climate Extremes, 2020, 28, 100253.	1.6	34
44	Extreme heat-related mortality avoided under Paris Agreement goals. Nature Climate Change, 2018, 8, 551-553.	8.1	33
45	Perspectives on tipping points in integrated models of the natural and human Earth system: cascading effects and telecoupling. Environmental Research Letters, 2022, 17, 015004.	2.2	33
46	Slow and fast responses of mean and extreme precipitation to different forcing in CMIP5 simulations. Geophysical Research Letters, 2017, 44, 6383-6390.	1.5	32
47	Combined impacts of climate and air pollution on human health and agricultural productivity. Environmental Research Letters, 2021, 16, 093004.	2.2	32
48	New vigour involving statisticians to overcome ensemble fatigue. Nature Climate Change, 2017, 7, 697-703.	8.1	31
49	Intensification of summer precipitation with shorter time-scales in Europe. Environmental Research Letters, 2019, 14, 124050.	2.2	31
50	Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. Journal of Agriculture and Food Research, 2021, 4, 100132.	1.2	31
51	The role of spatial and temporal model resolution in a flood event storyline approach in western Norway. Weather and Climate Extremes, 2020, 29, 100259.	1.6	30
52	Evaluation of CMIP5 and CMIP6 simulations of historical surface air temperature extremes using proper evaluation methods. Environmental Research Letters, 2020, 15, 124041.	2.2	29
53	Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment. Natural Hazards and Earth System Sciences, 2022, 22, 1487-1497.	1.5	27
54	Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environmental Research Letters, 2022, 17, 035005.	2.2	26

JANA SILLMANN

#	Article	IF	CITATIONS
55	Evaluating modelâ€simulated variability in temperature extremes using modified percentile indices. International Journal of Climatology, 2014, 34, 3304-3311.	1.5	24
56	Lessons from COVID-19 for managing transboundary climate risks and building resilience. Climate Risk Management, 2022, 35, 100395.	1.6	23
57	Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	21
58	Ten-year return levels of sub-daily extreme precipitation over Europe. Earth System Science Data, 2021, 13, 983-1003.	3.7	19
59	Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP. Geoscientific Model Development, 2021, 14, 3159-3184.	1.3	19
60	Comparison and Evaluation of Statistical Rainfall Disaggregation and High-Resolution Dynamical Downscaling over Complex Terrain. Journal of Hydrometeorology, 2018, 19, 1973-1982.	0.7	17
61	An Event-Based Approach to Explore Selected Present and Future Atmospheric River–Induced Floods in Western Norway. Journal of Hydrometeorology, 2020, 21, 2003-2021.	0.7	15
62	Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. Environmental Research Letters, 0, , .	2.2	15
63	From Hazard to Risk. Bulletin of the American Meteorological Society, 2018, 99, 1689-1693.	1.7	14
64	Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change. Environmental Research Letters, 2019, 14, 124022.	2.2	12
65	Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production. Economics of Disasters and Climate Change, 2021, 5, 367-390.	1.3	12
66	Changes in climate extremes in observations and climate model simulations. From the past to the future. , 2020, , 31-57.		11
67	Facilitating Climate-Smart Investments. One Earth, 2019, 1, 57-61.	3.6	8
68	Climate extremes and their implications for impact and risk assessment: A short introduction. , 2020, , 1-9.		7
69	Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures. Advances in Statistical Climatology, Meteorology and Oceanography, 2018, 4, 37-52.	0.6	6
70	Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.	2.4	5
71	Extreme weather and climate change. , 2021, , 359-372.		3
72	Predictive Skill of Teleconnection Patterns in Twentieth Century Seasonal Hindcasts and Their Relationship to Extreme Winter Temperatures in Europe. Geophysical Research Letters, 0, , .	1.5	3

#	Article	IF	CITATIONS
73	Outlook: Challenges for societal resilience under climate extremes. , 2020, , 341-353.		2
74	The EU needs a demand-driven innovation policy for climate services. Climate Services, 2021, 24, 100270.	1.0	1
75	Studying Statistical Methodology in Climate Research. Eos, 2014, 95, 129-129.	0.1	Ο