
## Yuan Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499780/publications.pdf Version: 2024-02-01



ΥΠΑΝ ΜΛΑΝ

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Self-Assembly of Extracellular Vesicle-like Metal–Organic Framework Nanoparticles for Protection<br>and Intracellular Delivery of Biofunctional Proteins. Journal of the American Chemical Society, 2018,<br>140, 7282-7291. | 6.6  | 277       |
| 2  | Nucleic acid aptamers in cancer research, diagnosis and therapy. Chemical Society Reviews, 2015, 44, 1240-1256.                                                                                                              | 18.7 | 217       |
| 3  | Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nature Biomedical<br>Engineering, 2017, 1, .                                                                                                  | 11.6 | 188       |
| 4  | Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Research, 2018, 78,<br>798-808.                                                                                                             | 0.4  | 181       |
| 5  | Size-based separation methods of circulating tumor cells. Advanced Drug Delivery Reviews, 2018, 125, 3-20.                                                                                                                   | 6.6  | 163       |
| 6  | A Spontaneous 3D Boneâ€Onâ€aâ€Chip for Bone Metastasis Study of Breast Cancer Cells. Small, 2018, 14,<br>e1702787.                                                                                                           | 5.2  | 138       |
| 7  | Nanostructured substrates for isolation of circulating tumor cells. Nano Today, 2013, 8, 374-387.                                                                                                                            | 6.2  | 136       |
| 8  | Mitochondria-Targeting Polydopamine Nanoparticles To Deliver Doxorubicin for Overcoming Drug<br>Resistance. ACS Applied Materials & Interfaces, 2017, 9, 16793-16802.                                                        | 4.0  | 135       |
| 9  | Surface-Immobilized Aptamers for Cancer Cell Isolation and Microscopic Cytology. Cancer Research, 2010, 70, 9371-9380.                                                                                                       | 0.4  | 128       |
| 10 | Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab on A<br>Chip, 2012, 12, 4693.                                                                                               | 3.1  | 108       |
| 11 | Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology. Cancer, 2012, 118, 1145-1154.                                                                                                      | 2.0  | 97        |
| 12 | Velocity Effect on Aptamer-Based Circulating Tumor Cell Isolation in Microfluidic Devices. Journal of Physical Chemistry B, 2011, 115, 13891-13896.                                                                          | 1.2  | 82        |
| 13 | Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors.<br>Nanoscale, 2014, 6, 12482-12489.                                                                                              | 2.8  | 76        |
| 14 | Small extracellular vesicles in cancer. Bioactive Materials, 2021, 6, 3705-3743.                                                                                                                                             | 8.6  | 61        |
| 15 | Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal<br>Stem Cells with Ultrasonication for Skin Rejuvenation. ACS Omega, 2019, 4, 22638-22645.                                    | 1.6  | 46        |
| 16 | Cell detachment: Post-isolation challenges. Biotechnology Advances, 2013, 31, 1664-1675.                                                                                                                                     | 6.0  | 42        |
| 17 | Synthesis of novel galactose functionalized gold nanoparticles and its radiosensitizing mechanism.<br>Journal of Nanobiotechnology, 2015, 13, 67.                                                                            | 4.2  | 37        |
| 18 | Labelâ€Free Virus Capture and Release by a Microfluidic Device Integrated with Porous Silicon Nanowire<br>Forest. Small, 2017, 13, 1603135.                                                                                  | 5.2  | 30        |

YUAN WAN

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparison of Antifungal Prophylaxis Drugs in Patients With Hematological Disease or Undergoing<br>Hematopoietic Stem Cell Transplantation. JAMA Network Open, 2020, 3, e2017652.                              | 2.8 | 30        |
| 20 | Engineered extracellular vesicles for concurrent Anti-PDL1 immunotherapy and chemotherapy.<br>Bioactive Materials, 2022, 9, 251-265.                                                                           | 8.6 | 30        |
| 21 | Preoccupation of Empty Carriers Decreases Endo-/Lysosome Escape and Reduces the Protein Delivery<br>Efficiency of Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10,<br>5340-5347. | 4.0 | 29        |
| 22 | Enrichment of extracellular vesicles with lipid nanoprobe functionalized nanostructured silica. Lab<br>on A Chip, 2019, 19, 2346-2355.                                                                         | 3.1 | 29        |
| 23 | Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles. , 2022, 1, 100004.                                                                           |     | 29        |
| 24 | Circulating Exosomal miR-96 as a Novel Biomarker for Radioresistant Non-Small-Cell Lung Cancer.<br>Journal of Oncology, 2021, 2021, 1-11.                                                                      | 0.6 | 27        |
| 25 | Conferring receptors on recipient cells with extracellular vesicles for targeted drug delivery.<br>Bioactive Materials, 2021, 6, 749-756.                                                                      | 8.6 | 22        |
| 26 | lsolation and Retrieval of Extracellular Vesicles for Liquid Biopsy of Malignant Ground-Glass Opacity.<br>Analytical Chemistry, 2019, 91, 13729-13736.                                                         | 3.2 | 21        |
| 27 | CT-guided versus laparoscopic radiofrequency ablation in recurrent small hepatocellular carcinoma against the diaphragmatic dome. Scientific Reports, 2017, 7, 44583.                                          | 1.6 | 17        |
| 28 | Self-Assembly of Smart Multifunctional Hybrid Compartments with Programmable Bioactivity.<br>Chemistry of Materials, 2017, 29, 2081-2089.                                                                      | 3.2 | 16        |
| 29 | Nucleus of Circulating Tumor Cell Determines Its Translocation Through Biomimetic<br>Microconstrictions and Its Physical Enrichment by Microfiltration. Small, 2018, 14, e1802899.                             | 5.2 | 15        |
| 30 | The roles of small extracellular vesicles in lung cancer: Molecular pathology, mechanisms,<br>diagnostics, and therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188539.             | 3.3 | 14        |
| 31 | Isolation of extracellular vesicles with multivalent aptamers. Analyst, The, 2021, 146, 253-261.                                                                                                               | 1.7 | 13        |
| 32 | Combined Methylome and Transcriptome Analyses Reveals Potential Therapeutic Targets for EGFR Wild<br>Type Lung Cancers with Low PD-L1 Expression. Cancers, 2020, 12, 2496.                                     | 1.7 | 11        |
| 33 | Factors influencing the measurement of the secretion rate of extracellular vesicles. Analyst, The, 2020, 145, 5870-5877.                                                                                       | 1.7 | 10        |
| 34 | AGR2-Dependent Nuclear Import of RNA Polymerase II Constitutes a Specific Target of Pancreatic<br>Ductal Adenocarcinoma in the Context of Wild-Type p53. Gastroenterology, 2021, 161, 1601-1614.e23.           | 0.6 | 10        |
| 35 | Coupled immune stratification and identification of therapeutic candidates in patients with lung adenocarcinoma. Aging, 2020, 12, 16514-16538.                                                                 | 1.4 | 10        |
| 36 | Proteomic Analysis of Extracellular Vesicles Derived from MDA-MB-231 Cells in Microgravity. Protein<br>Journal, 2021, 40, 108-118.                                                                             | 0.7 | 7         |

YUAN WAN

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Enhanced radiation effect on SMCC7721 cells through endoplasmic reticulum stress induced by<br>C225-GNPs inÃ <sup>-</sup> Â;¼2vitro and inÃ <sup>-</sup> Â;½vivo. Oncology Letters, 2018, 15, 4221-4228. | 0.8  | 5         |
| 38 | Enhanced detection of tumour-secreted vesicles. Nature Biomedical Engineering, 2019, 3, 421-422.                                                                                                         | 11.6 | 2         |
| 39 | Affinity-Based Enrichment of Extracellular Vesicles with Lipid Nanoprobes. Methods in Molecular<br>Biology, 2022, 2394, 185-197.                                                                         | 0.4  | 2         |
| 40 | Integrated mPD‣1 and metabolic analysis identifies new prognostic subgroups in lung cancers with<br>wildâ€ŧype EGFR. Clinical and Translational Medicine, 2021, 11, e612.                                | 1.7  | 1         |
| 41 | Virus Capture: Labelâ€Free Virus Capture and Release by a Microfluidic Device Integrated with Porous<br>Silicon Nanowire Forest (Small 6/2017). Small, 2017, 13, .                                       | 5.2  | 0         |
| 42 | Enrichment of Extracellular Vesicles Via Lipid Nanoprobe-Functionalized Nanostructured Silica<br>Microdevice. , 2019, , .                                                                                |      | 0         |
| 43 | Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Frontiers in Oncology, 2022, 12, .                                                     | 1.3  | 0         |