
Guangzhao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature Communications, 2016, 7, 11782.	5.8	374
2	Silicone-Based Fouling-Release Coatings for Marine Antifouling. Langmuir, 2020, 36, 2170-2183.	1.6	225
3	Dynamic surface antifouling: mechanism and systems. Soft Matter, 2019, 15, 1087-1107.	1.2	183
4	Self-repairing silicone coatings for marine anti-biofouling. Journal of Materials Chemistry A, 2017, 5, 15855-15861.	5.2	159
5	Microcalorimetric Investigation on Aggregation and Dissolution of Poly(N-isopropylacrylamide) Chains in Water. Macromolecules, 2005, 38, 904-908.	2.2	157
6	Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 8967-8974.	4.0	138
7	Macromolecular architectures through organocatalysis. Progress in Polymer Science, 2017, 74, 34-77.	11.8	124
8	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
9	Hybrid Copolymerization of ε-Caprolactone and Methyl Methacrylate. Macromolecules, 2012, 45, 3312-3317.	2.2	115
10	Integrating Ionic Gate and Rectifier Within One Solid‧tate Nanopore via Modification with Dualâ€Responsive Copolymer Brushes. Advanced Functional Materials, 2010, 20, 3561-3567.	7.8	108
11	Collagen Cryogel Cross‣inked by Dialdehyde Starch. Macromolecular Materials and Engineering, 2010, 295, 100-107.	1.7	107
12	Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 12956-12967.	6.6	107
13	Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1391-E1400.	3.3	106
14	High Efficiency Organic Lewis Pair Catalyst for Ring-Opening Polymerization of Epoxides with Chemoselectivity. Macromolecules, 2018, 51, 8286-8297.	2.2	105
15	Ion-Specific Conformational Behavior of Polyzwitterionic Brushes: Exploiting It for Protein Adsorption/Desorption Control. Langmuir, 2013, 29, 6588-6596.	1.6	97
16	Self-Buffering Organocatalysis Tailoring Alternating Polyester. ACS Macro Letters, 2017, 6, 1094-1098.	2.3	94
17	Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant. ACS Sustainable Chemistry and Engineering, 2017, 5, 6304-6309.	3.2	92
18	Study on Conformation Change of Thermally Sensitive Linear Grafted Poly(N-isopropylacrylamide) Chains by Quartz Crystal Microbalance. Macromolecules, 2004, 37, 6553-6557.	2.2	90

#	Article	IF	CITATIONS
19	Biased Lewis Pairs: A General Catalytic Approach to Etherâ€Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie - International Edition, 2019, 58, 15478-15487.	7.2	90
20	Synthesis and properties of thermosetting resin based on urushiol. RSC Advances, 2012, 2, 2768.	1.7	87
21	Coatings with a self-generating hydrogel surface for antifouling. Polymer, 2011, 52, 3738-3744.	1.8	86
22	Preparation of Polyurethane with Zwitterionic Side Chains and Their Protein Resistance. ACS Applied Materials & Interfaces, 2011, 3, 455-461.	4.0	83
23	Marine Biofouling Resistance of Polyurethane with Biodegradation and Hydrolyzation. ACS Applied Materials & Interfaces, 2014, 6, 4017-4024.	4.0	83
24	Degradable polyurethane for marine anti-biofouling. Journal of Materials Chemistry B, 2013, 1, 3099.	2.9	82
25	Resolving Optical and Catalytic Activities in Thermoresponsive Nanoparticles by Permanent Ligation with Temperatureâ€Sensitive Polymers. Angewandte Chemie - International Edition, 2019, 58, 11910-11917.	7.2	80
26	Quartz Crystal Microbalance Studies on Conformational Change of Polymer Chains at Interface. Macromolecular Rapid Communications, 2009, 30, 328-335.	2.0	76
27	Well-Defined and Structurally Diverse Aromatic Alternating Polyesters Synthesized by Simple Phosphazene Catalysis. Macromolecules, 2018, 51, 2247-2257.	2.2	76
28	Biodegradable Polymer with Hydrolysis-Induced Zwitterions for Antibiofouling. ACS Applied Materials & Interfaces, 2018, 10, 11213-11220.	4.0	76
29	Fouling resistant silicone coating with self-healing induced by metal coordination. Chemical Engineering Journal, 2021, 406, 126870.	6.6	75
30	Selfâ€Healing Gelatin Hydrogels Crossâ€Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Macromolecular Rapid Communications, 2017, 38, 1700018.	2.0	74
31	Forwardâ€Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents. Advanced Materials, 2016, 28, 4156-4161.	11.1	70
32	Fouling Release Property of Polydimethylsiloxane-Based Polyurea with Improved Adhesion to Substrate. Industrial & Engineering Chemistry Research, 2016, 55, 6671-6676.	1.8	69
33	Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling. ACS Applied Materials & Interfaces, 2019, 11, 41750-41757.	4.0	69
34	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	1.1	69
35	How Many Stages in the Coil-to-Globule Transition of Linear Homopolymer Chains in a Dilute Solution?. Macromolecules, 2007, 40, 4750-4752.	2.2	68
36	Precisely Sizeâ€Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star‣ike Block Copolymers. Small, 2016, 12, 6714-6723.	5.2	68

Guangzhao Zhang

#	Article	IF	CITATIONS
37	Transparent Polymerâ€Ceramic Hybrid Antifouling Coating with Superior Mechanical Properties. Advanced Functional Materials, 2021, 31, 2011145.	7.8	68
38	Sequence-Selective Terpolymerization from Monomer Mixtures Using a Simple Organocatalyst. ACS Macro Letters, 2018, 7, 1420-1425.	2.3	66
39	One-Step Approach to Polyester–Polyether Block Copolymers Using Highly Tunable Bicomponent Catalyst. ACS Macro Letters, 2019, 8, 973-978.	2.3	66
40	Effect of Comonomer Distribution on the Coil-to-Globule Transition of a Single AB Copolymer Chain in Dilute Solution. Macromolecules, 2002, 35, 2723-2727.	2.2	65
41	Poly(dimethylsiloxane)-Based Polyurethane with Chemically Attached Antifoulants for Durable Marine Antibiofouling. ACS Applied Materials & Interfaces, 2015, 7, 21030-21037.	4.0	64
42	Morphological transitions in aggregates of thermosensitive poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Journal of Polymer Science Part A, 2009, 47, 4099-4110.	547 Td (o 2.5	xide)â€∢i>b< 56
43	Ring-Opening Alternating Copolymerization of Epoxides and Dihydrocoumarin Catalyzed by a Phosphazene Superbase. Macromolecules, 2016, 49, 4462-4472.	2.2	54
44	Self‣tratifying Silicone Coating with Nonleaching Antifoulant for Marine Antiâ€Biofouling. Advanced Materials Interfaces, 2019, 6, 1900535.	1.9	54
45	Biodegradable Poly(ester- <i>co</i> -acrylate) with Antifoulant Pendant Groups for Marine Anti-Biofouling. ACS Applied Materials & Interfaces, 2019, 11, 11947-11953.	4.0	54
46	"From the Nature for the Nature― An Eco-Friendly Antifouling Coating Consisting of Poly(lactic) Tj ETQq0 0 1671-1678.	0 rgBT /0 3.2	verlock 10 Tf 53
47	Thermoresponsive Coreâ^'Shell Brush Copolymers with Poly(propylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 2010, 43, 1771-1777.	Tf 50 347 2.2	Td (oxide)- <i< td=""></i<>
48	A self-healing polymeric material: from gel to plastic. Journal of Materials Chemistry A, 2014, 2, 11049.	5.2	52
49	In situ investigations on enzymatic degradation of poly(É>-caprolactone). Polymer, 2007, 48, 6348-6353.	1.8	50
50	A Very Useful Redox Initiator for Aqueous RAFT Polymerization of <i>N</i> â€Isopropylacrylamide and Acrylamide at Room Temperature. Macromolecular Rapid Communications, 2008, 29, 562-566.	2.0	50
51	Amphiphilic Polystyrene-b-poly(p-hydroxystyrene-g-ethylene oxide) Blockâ^'Graft Copolymers via a Combination of Conventional and Metal-Free Anionic Polymerization. Macromolecules, 2009, 42, 8661-8668.	2.2	48
52	Effect of Surface Wettability on Ion-Specific Protein Adsorption. Langmuir, 2012, 28, 14642-14653.	1.6	48
53	An Injectable Hydrogel with Excellent Selfâ€Healing Property Based on Quadruple Hydrogen Bonding. Macromolecular Chemistry and Physics, 2016, 217, 2172-2181.	1.1	48
54	Structure of a Collapsed Polymer Chain with Stickers: A Single- or Multiflower?. Physical Review Letters, 2003, 90, 035506.	2.9	47

#	Article	IF	CITATIONS
55	Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions. Journal of Materials Chemistry A, 2013, 1, 5353.	5.2	46
56	Hybrid polybenzoxazine with tunable properties. RSC Advances, 2013, 3, 3677.	1.7	46
57	Non-elastic glassy coating with fouling release and resistance abilities. Journal of Materials Chemistry A, 2020, 8, 380-387.	5.2	46
58	Kill–Resist–Renew Trinity: Hyperbranched Polymer with Self-Regenerating Attack and Defense for Antifouling Coatings. ACS Applied Materials & Interfaces, 2021, 13, 13735-13743.	4.0	46
59	Anion Specificity of Polyzwitterionic Brushes with Different Carbon Spacer Lengths and Its Application for Controlling Protein Adsorption. Langmuir, 2016, 32, 2698-2707.	1.6	45
60	Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties. Langmuir, 2017, 33, 3525-3533.	1.6	44
61	Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(ethylene oxide). Biomacromolecules, 2017, 18, 3233-3237.	2.6	44
62	Cation-Specific Conformational Behavior of Polyelectrolyte Brushes: From Aqueous to Nonaqueous Solvent. Langmuir, 2014, 30, 12850-12859.	1.6	43
63	A versatile strategy for uniform hybrid nanoparticles and nanocapsules. Polymer Chemistry, 2015, 6, 5190-5197.	1.9	43
64	Biomimicking Nanoâ€Micro Binary Polymer Brushes for Smart Cell Orientation and Adhesion Control. Small, 2016, 12, 3400-3406.	5.2	43
65	Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive. Science Advances, 2016, 2, e1600579.	4.7	43
66	Marine anti-biofouling system with poly(ε-caprolactone)/clay composite as carrier of organic antifoulant. Journal of Materials Chemistry B, 2014, 2, 5100.	2.9	42
67	Biodegradable polymers for marine antibiofouling: Poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant. Polymer, 2016, 90, 215-221.	1.8	42
68	Synthesis of polyurethane-g-poly(ethylene glycol) copolymers by macroiniferter and their protein resistance. Polymer Chemistry, 2011, 2, 1409.	1.9	41
69	Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling. Progress in Organic Coatings, 2017, 104, 58-63.	1.9	41
70	Self-healing, highly elastic and amphiphilic silicone-based polyurethane for antifouling coatings. Journal of Materials Chemistry B, 2021, 9, 1384-1394.	2.9	41
71	Effect of Microphase Separation on the Protein Resistance of a Polymeric Surface. Langmuir, 2009, 25, 9467-9472.	1.6	40
72	Ring-opening (co)polymerization of $\hat{1}^3$ -butyrolactone: a review. Polymer Journal, 2020, 52, 3-11.	1.3	40

#	Article	IF	CITATIONS
73	Synthesis of Poly[(ethylene carbonate)â€ <i>co</i> â€(ethylene oxide)] Copolymer by Phosphazeneâ€Catalyzed ROP. Macromolecular Chemistry and Physics, 2011, 212, 2589-2593.	1.1	39
74	Polymeric material for anti-biofouling. Colloids and Surfaces B: Biointerfaces, 2012, 100, 31-35.	2.5	39
75	Base-to-Base Organocatalytic Approach for One-Pot Construction of Poly(ethylene oxide)-Based Macromolecular Structures. Macromolecules, 2016, 49, 6817-6825.	2.2	39
76	Phosphazene-Catalyzed Alternating Copolymerization of Dihydrocoumarin and Ethylene Oxide: Weaker Is Better. Macromolecules, 2017, 50, 4198-4205.	2.2	39
77	Nylon 3 synthesized by ring opening polymerization with a metal-free catalyst. Polymer Chemistry, 2011, 2, 2888.	1.9	38
78	Inhibition of Marine Biofouling by Use of Degradable and Hydrolyzable Silyl Acrylate Copolymer. Industrial & Engineering Chemistry Research, 2015, 54, 9559-9565.	1.8	37
79	Biodegradable poly(ester)-poly(methyl methacrylate) copolymer for marine anti-biofouling. Progress in Organic Coatings, 2018, 124, 55-60.	1.9	37
80	Degradable Vinyl Polymers for Combating Marine Biofouling. Accounts of Chemical Research, 2022, 55, 1586-1598.	7.6	36
81	Thermoresponsive brush copolymers with poly(propylene oxideâ€ <i>ran</i> â€ethylene oxide) side chains via metalâ€free anionic polymerization "grafting from―technique. Journal of Polymer Science Part A, 2010, 48, 2320-2328.	2.5	35
82	Biodegradable Polyurethane Carrying Antifoulants for Inhibition of Marine Biofouling. Industrial & Engineering Chemistry Research, 2014, 53, 12753-12759.	1.8	34
83	Ionic Organocatalyst with a Urea Anion and Tetra-n-butyl Ammonium Cation for Rapid, Selective, and Versatile Ring-Opening Polymerization of Lactide. ACS Macro Letters, 2019, 8, 759-765.	2.3	34
84	Fast electrically driven photonic crystal based on charged block copolymer. Journal of Materials Chemistry C, 2013, 1, 6107.	2.7	32
85	Poly(ester)–poly(silyl methacrylate) copolymers: synthesis and hydrolytic degradation kinetics. Polymer Chemistry, 2018, 9, 1448-1454.	1.9	32
86	Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses. Biofouling, 2018, 34, 111-122.	0.8	32
87	One-step synthesis of hyperbranched biodegradable polymer. RSC Advances, 2013, 3, 6853.	1.7	31
88	Controlled/living ringâ€opening polymerization of <i>ε</i> â€caprolactone with salicylic acid as the organocatalyst. Journal of Polymer Science Part A, 2014, 52, 1185-1192.	2.5	31
89	Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries. RSC Advances, 2018, 8, 4604-4609.	1.7	31
90	Rapid curing and self-stratifying lacquer coating with antifouling and anticorrosive properties. Chemical Engineering Journal, 2021, 421, 129755.	6.6	31

Guangzhao Zhang

#	Article	IF	CITATIONS
91	Tuning surface wettability through supramolecular interactions. Soft Matter, 2011, 7, 1638.	1.2	30
92	"Bitter-Sweet―Polymeric Micelles Formed by Block Copolymers from Glucosamine and Cholic Acid. Biomacromolecules, 2017, 18, 778-786.	2.6	30
93	Reentrant behavior of grafted poly(sodium styrenesulfonate) chains investigated with a quartz crystal microbalance. Physical Chemistry Chemical Physics, 2011, 13, 2880-2886.	1.3	29
94	Metal-free controlled ring-opening polymerization of ε-caprolactone in bulk using tris(pentafluorophenyl)borane as a catalyst. Polymer Chemistry, 2014, 5, 4726-4733.	1.9	29
95	Degradable Polymer with Protein Resistance in a Marine Environment. Langmuir, 2015, 31, 6471-6478.	1.6	28
96	Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy: Effect of Surface Stiffness. Langmuir, 2019, 35, 12257-12263.	1.6	28
97	Disstacking of Phthalocyanine in Water by Poly(ethylene Oxide). Langmuir, 2001, 17, 1381-1383.	1.6	27
98	Counterion-Specific Protein Adsorption on Polyelectrolyte Brushes. Langmuir, 2015, 31, 6078-6084.	1.6	27
99	Degradable Polymers for Marine Antibiofouling: Optimizing Structure To Improve Performance. Industrial & Engineering Chemistry Research, 2016, 55, 11495-11501.	1.8	27
100	Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers. Langmuir, 2017, 33, 13098-13104.	1.6	27
101	Silicone Elastomer with Surface-Enriched, Nonleaching Amphiphilic Side Chains for Inhibiting Marine Biofouling. ACS Applied Polymer Materials, 2019, 1, 1689-1696.	2.0	27
102	Synthesis of Poly(<i>ïµ</i> â€caprolactoneâ€ <i>co</i> â€methacrylic acid) Copolymer via Phosphazeneâ€Catalyze Hybrid Copolymerization. Macromolecular Chemistry and Physics, 2013, 214, 378-385.	ed 1.1	26
103	Novel hybrid anti-biofouling coatings with a self-peeling and self-generated micro-structured soft and dynamic surface. Journal of Materials Chemistry B, 2013, 1, 2048.	2.9	25
104	Noncopolymerization Approach to Copolymers via Concurrent Transesterification and Ring-Opening Reactions. ACS Macro Letters, 2016, 5, 40-44.	2.3	25
105	Self-Cross-Linking Degradable Polymers for Antifouling Coatings. Industrial & Engineering Chemistry Research, 2017, 56, 5318-5324.	1.8	25
106	Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS Applied Materials & Interfaces, 2018, 10, 6593-6600.	4.0	25
107	Simultaneous realization of antifouling, self-healing, and strong substrate adhesion via a bioinspired self-stratification strategy. Chemical Engineering Journal, 2022, 449, 137875.	6.6	25
108	Synthesis of cyclic polyelectrolyte via direct copper(I) atalyzed click cyclization. Journal of Polymer Science Part A, 2012, 50, 831-835.	2.5	24

#	Article	IF	CITATIONS
109	Crystallization of Polymer Chains Chemically Attached on a Surface: Lamellar Orientation from Flat-on to Edge-on. Journal of Physical Chemistry B, 2016, 120, 4715-4722.	1.2	24
110	Synthesis and properties of amphiphilic and biodegradable poly(Îμ-caprolactone- <i>co</i> -glycidol) copolymers. Journal of Polymer Science Part A, 2015, 53, 846-853.	2.5	23
111	Nanodiamond Reinforced Poly(dimethylsiloxane)-Based Polyurea with Self-Healing Ability for Fouling Release Coating. ACS Applied Polymer Materials, 2020, 2, 3181-3188.	2.0	23
112	Effects of hydrolyzable comonomer and cross-linking on anti-biofouling terpolymer coatings. Polymer, 2013, 54, 2966-2972.	1.8	22
113	One-pot synthesis of poly(<scp> </scp> -lactide)-b-poly(methyl methacrylate) block copolymers. RSC Advances, 2015, 5, 38243-38247.	1.7	22
114	Chemoselective Polymerization of Epoxides from Carboxylic Acids: Direct Access to Esterified Polyethers and Biodegradable Polyurethanes. ACS Macro Letters, 2019, 8, 1582-1587.	2.3	22
115	Fouling Release Coating Consisting of Hyperbranched Poly(ε-caprolactone)/Siloxane Elastomer. ACS Applied Polymer Materials, 2020, 2, 1429-1437.	2.0	22
116	Protein resistance of polyurethane with hydrophilic and hydrophobic soft segments. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1987-1993.	2.4	20
117	Biased Lewis Pairs: A General Catalytic Approach to Etherâ€Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie, 2019, 131, 15624-15633.	1.6	20
118	Investigation of Formation of Bacterial Biofilm upon Dead Siblings. Langmuir, 2019, 35, 7405-7413.	1.6	19
119	Multifunctional Hard Yet Flexible Coatings Fabricated Using a Universal Stepâ€byâ€Step Strategy. Advanced Science, 2022, 9, e2200268.	5.6	18
120	A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Advances, 2015, 5, 60401-60408.	1.7	17
121	Expanding the scope of organocatalysis for alternating copolymerization of dihydrocoumarin and styrene oxide. European Polymer Journal, 2017, 95, 693-701.	2.6	17
122	Surfactantâ€free synthesis of amphiphilic copolymer of poly(styreneâ€ <i>co</i> â€acrylamide) in aqueous emulsion with the assistance of ultrasound. Polymers for Advanced Technologies, 2008, 19, 221-228.	1.6	16
123	Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter, 2011, 7, 4156.	1.2	16
124	Surface-fragmenting hyperbranched copolymers with hydrolysis-generating zwitterions for antifouling coatings. Journal of Materials Chemistry B, 2020, 8, 5434-5440.	2.9	16
125	Silicone Elastomer with Self-Generating Zwitterions for Antifouling Coatings. Langmuir, 2021, 37, 8253-8260.	1.6	16
126	Simple and Precision Approach to Polythioimidocarbonates and Hybrid Block Copolymer Derivatives. Macromolecules, 2021, 54, 11113-11125.	2.2	16

#	Article	IF	CITATIONS
127	Effect of Sonication on Polymeric Aggregates Formed by Poly(ethylene oxide)â€Based Amphiphilic Block Copolymers. Macromolecular Chemistry and Physics, 2009, 210, 1026-1032.	1.1	15
128	pH and ion-species sensitive fluorescence properties of star polyelectrolytes containing a triphenylene core. Soft Matter, 2012, 8, 6364.	1.2	15
129	Poly(urea ester): A family of biodegradable polymers with high melting temperatures. Journal of Polymer Science Part A, 2016, 54, 3795-3799.	2.5	15
130	Mechanic Insight into Aggregation of Lysozyme by Ultrasensitive Differential Scanning Calorimetry and Sedimentation Velocity. Journal of Physical Chemistry B, 2015, 119, 15789-15795.	1.2	14
131	Degradable hyperbranched polymer with fouling resistance for antifouling coatings. Progress in Organic Coatings, 2021, 153, 106141.	1.9	14
132	Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy. Journal of Materials Science and Technology, 2021, 84, 200-207.	5.6	14
133	Hybrid copolymerization of cyclic and vinyl monomers. Science China Chemistry, 2013, 56, 1101-1104.	4.2	12
134	Mechanical Insight into Resistance of Betaine to Urea-Induced Protein Denaturation. Journal of Physical Chemistry B, 2016, 120, 12327-12333.	1.2	12
135	Facile synthesis of biodegradable and clickable polymer. RSC Advances, 2014, 4, 23377-23381.	1.7	11
136	Poly(l-lactide-co-2-(2-methoxyethoxy)ethyl methacrylate): A biodegradable polymer with protein resistance. Colloids and Surfaces B: Biointerfaces, 2014, 116, 531-536.	2.5	11
137	UV-curable hyperbranched poly(ester- <i>co</i> -vinyl) by radical ring-opening copolymerization for antifouling coatings. Polymer Chemistry, 2021, 12, 4524-4531.	1.9	11
138	Collapse and swelling of poly(N-isopropylacrylamide-co-sodium acrylate) copolymer brushes grafted on a flat SiO2 surface. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 770-778.	2.4	10
139	Specific Ion Effects on the Enzymatic Degradation of Polymeric Marine Antibiofouling Materials. Langmuir, 2019, 35, 11157-11166.	1.6	10
140	Pickering Emulsion-Based Marbles for Cellular Capsules. Materials, 2016, 9, 572.	1.3	9
141	Mimicking enzymatic systems: modulation of the performance of polymeric organocatalysts by ion-specific effects. Chemical Communications, 2016, 52, 3392-3395.	2.2	9
142	Method for 3D tracking behaviors of interplaying bacteria individuals. Optics Express, 2020, 28, 28060.	1.7	9
143	Synthesis and properties of antifouling poly(CL-co-zDMAEMA) zwitterionic copolymer by one-step hybrid copolymerization. Materials Science and Engineering C, 2015, 51, 189-195.	3.8	8
144	Noncovalent Protection for Direct Synthesis of α-Amino-ω-hydroxyl Poly(ethylene oxide). ACS Macro Letters, 2021, 10, 737-743.	2.3	8

#	Article	IF	CITATIONS
145	Resolving Optical and Catalytic Activities in Thermoresponsive Nanoparticles by Permanent Ligation with Temperatureâ€Sensitive Polymers. Angewandte Chemie, 2019, 131, 12036-12043.	1.6	7
146	N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 2: Toward dihydroxytelechelic polyethers using triethylborane. European Polymer Journal, 2020, 134, 109839.	2.6	7
147	N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 1: Triisobutylaluminum as an efficient controlling agent. European Polymer Journal, 2020, 134, 109819.	2.6	7
148	Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111408.	2.5	7
149	Dispersion of polystyrene inside polystyreneâ€ <i>b</i> â€poly(<i>N</i> â€isopropylacrylamide) micelles in water. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 749-755.	2.4	6
150	Organic/inorganic dual network formed by epoxy and cement. Polymer Composites, 2018, 39, E2490.	2.3	6
151	Tree root-inspired robust superhydrophobic coatings with high permeation for porous structures. IScience, 2021, 24, 103197.	1.9	6
152	Investigation of the self-association behavior of a thermosensitive copolymer with lower critical solubility temperature near human heat by dynamic laser light scattering. Journal of Applied Polymer Science, 2005, 96, 583-588.	1.3	5
153	Composition-dependent damping and relaxation dynamics in miscible polymer blends above glass transition temperature by anelastic spectroscopy. Applied Physics Letters, 2008, 93, 011910.	1.5	5
154	Effect of end-group modification on the adsorption of poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymers at the solid–liquid interface. Polymer Bulletin, 2010, 65, 521-531.	1.7	5
155	One-Pot synthesis of functional poly(methacrylate) by ATRP and 1,8-Diazacyclo-[5,4,0]undec-7-ene catalyzed transesterification. Journal of Polymer Science Part A, 2014, 52, 2998-3003.	2.5	5
156	Microrheology of growing <i>Escherichia coli</i> biofilms investigated by using magnetic force modulation atomic force microscopy. Biointerphases, 2016, 11, 041005.	0.6	5
157	Microscale topographic surfaces modulate three-dimensional migration of human spermatozoa. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111096.	2.5	5
158	Folding of a single polymer chain and phase transition. Science Bulletin, 2009, 54, 1908-1911.	4.3	4
159	Ultrahigh resolution, serial fabrication of three dimensionally-patterned protein nanostructures by liquid-mediated non-contact scanning probe lithography. RSC Advances, 2016, 6, 50331-50335.	1.7	4
160	Polyelectrolyte multilayers under compression: concurrent osmotic stress and colloidal probe atomic force microscopy. Soft Matter, 2018, 14, 961-968.	1.2	4
161	A Nonâ€isocyanate Strategy towards Polyurethane Vitrimers from Alkylene Bisurea and Epoxide through Eutecticâ€Assisted Melting. Macromolecular Chemistry and Physics, 0, , 2100452.	1.1	4
162	Alternating electric fields induce a period-dependent motion of <i>Escherichia coli</i> in three-dimension near a conductive surface. Biointerphases, 2019, 14, 011005.	0.6	3

#	Article	IF	CITATIONS
163	Investigation of the interfacial water structure on poly[2-(dimethylamino)ethyl methacrylate] at the air/water interface by sum frequency generation vibrational spectroscopy. Science Bulletin, 2012, 57, 984-991.	1.7	1
164	Polymer Brushes: Liquid-Mediated Three-Dimensional Scanning Probe Nanosculpting (Small 17/2013). Small, 2013, 9, 2850-2850.	5.2	1
165	Saltâ€induced formation of DNA double helices from single stranded DNA investigated by analytical ultracentrifugation. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 501-508.	2.4	1
166	MoS2 armored polystyrene particles with a narrow size distribution via membrane-assisted Pickering emulsions for monolayer-shelled liquid marbles. RSC Advances, 2015, 5, 80424-80427.	1.7	0
167	Cation-amino acid interactions: Implications for protein destabilization. Biochemical and Biophysical Research Communications, 2021, 548, 47-52.	1.0	0