
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499691/publications.pdf Version: 2024-02-01

IOHN R FUDNESS

#	Article	IF	CITATIONS
1	The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 286-294.	8.2	1,119
2	The role of the gut microbiota in NAFLD. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 412-425.	8.2	728
3	Types of neurons in the enteric nervous system. Journal of the Autonomic Nervous System, 2000, 81, 87-96.	1.9	680
4	Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neuroscience Letters, 1985, 57, 125-130.	1.0	613
5	Types of nerves in the enteric nervous system. Neuroscience, 1980, 5, 1-20.	1.1	609
6	The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. Advances in Experimental Medicine and Biology, 2014, 817, 39-71.	0.8	573
7	Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. Journal of Experimental Medicine, 2013, 210, 2305-2320.	4.2	516
8	The gut as a sensory organ. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 729-740.	8.2	386
9	Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell and Tissue Research, 2006, 324, 353-360.	1.5	384
10	Intrinsic primary afferent neuronsof the intestine. Progress in Neurobiology, 1998, 54, 1-18.	2.8	373
11	THE ENTERIC NERVOUS SYSTEM AND REGULATION OF INTESTINAL MOTILITY. Annual Review of Physiology, 1999, 61, 117-142.	5.6	359
12	Pathway-specific patterns of the co-existence of substance P, calcitonin gene-related peptide, cholecystokinin and dynorphin in neurons of the dorsal root ganglia of the guinea-pig. Cell and Tissue Research, 1987, 248, 417-37.	1.5	334
13	Immunohistochemical localization of polypeptides in peripheral autonomic nerves using whole mount preparations. Histochemistry, 1980, 65, 157-165.	1.9	320
14	Intrinsic primary afferent neurons and nerve circuits within the intestine. Progress in Neurobiology, 2004, 72, 143-164.	2.8	311
15	Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neuroscience Letters, 1992, 148, 121-125.	1.0	304
16	Substance P-like immunoreactivity in nerves associated with the vascular system of guinea-pigs. Neuroscience, 1982, 7, 447-459.	1.1	296
17	The peristaltic reflex: An analysis of the nerve pathways and their pharmacology. Naunyn-Schmiedeberg's Archives of Pharmacology, 1976, 294, 47-60.	1.4	289
18	Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry, 1992, 97, 375-378.	1.9	284

#	Article	IF	CITATIONS
19	Immunohistochemical analysis of neuron types in the mouse small intestine. Cell and Tissue Research, 2008, 334, 147-161.	1.5	277
20	Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell and Tissue Research, 1983, 234, 71-92.	1.5	264
21	Dual Adrenergic and Cholinergic Innervation of the Cerebral Arteries of the Rat. Circulation Research, 1970, 26, 635-646.	2.0	263
22	Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7318-7323.	3.3	262
23	Choline acetyltransferase- and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig. Cell and Tissue Research, 1984, 237, 329-336.	1.5	252
24	Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: Their projections in the guinea-pig small intestine. Neuroscience, 1982, 7, 341-349.	1.1	251
25	Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: Their visualization and reactions to drug treatment. Neuroscience, 1982, 7, 351-363.	1.1	249
26	Chapter 15 Chemical coding of enteric neurons. Progress in Brain Research, 1986, 68, 217-239.	0.9	241
27	The use of glycoxylic acid for the fluorescence histochemical demonstration of peripheral stores of noradrenaline and 5-hydroxytryptamine in whole mounts. Histochemistry, 1975, 41, 335-352.	1.9	233
28	Projections of substance P-containing neurons within the guinea-pig small intestine. Neuroscience, 1981, 6, 411-424.	1.1	217
29	The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience, 1983, 8, 665-676.	1.1	217
30	Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol- and indolethylamines. Histochemistry, 1977, 52, 159-170.	1.9	214
31	Distribution of enteric neurons showing immunoreactivity for substance P in the guinea-pig ileum. Neuroscience, 1980, 5, 323-331.	1.1	204
32	Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species. Journal of Comparative Neurology, 1985, 236, 403-422.	0.9	203
33	Characterization of Antisera Specific to NK1, NK2, and NK3 Neurokinin Receptors and their Utilization to Localize Receptors in the Rat Gastrointestinal Tract. Journal of Neuroscience, 1996, 16, 6975-6986.	1.7	198
34	Simultaneous demonstration of phenylethanolamine N-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience, 1980, 5, 2229-2238.	1.1	195
35	Neurochemically similar myenteric and submucous neurons directly traced to the mucosa of the small intestine. Cell and Tissue Research, 1985, 241, 155-163.	1.5	189
36	Somatostatin is present in a subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience, 1984, 13, 911-919.	1.1	188

#	Article	IF	CITATIONS
37	Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience, 1995, 66, 1-4.	1.1	185
38	Electrophysiological characterization of myenteric neurons: how do classification schemes relate?. Journal of the Autonomic Nervous System, 1994, 48, 1-15.	1.9	180
39	Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology, 1995, 108, 554-563.	0.6	179
40	The terminals of myenteric intrinsic primary afferent neurons of the guinea-pig ileum are excited by 5-hydroxytryptamine acting at 5-hydroxytryptamine-3 receptors. Neuroscience, 2000, 101, 459-469.	1.1	176
41	Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. Journal of Physiology, 1998, 506, 827-842.	1.3	175
42	Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell and Tissue Research, 2000, 302, 59-72.	1.5	175
43	Evidence for the release of endogenous substance P from intestinal nerves. Naunyn-Schmiedeberg's Archives of Pharmacology, 1979, 306, 195-201.	1.4	174
44	Distribution and projections of nerves with enkephalin-like immunoreactivity in the guinea-pig small intestine. Neuroscience, 1983, 8, 653-664.	1.1	171
45	Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell and Tissue Research, 1986, 244, 173-80.	1.5	169
46	Roles of peptides in transmission in the enteric nervous system. Trends in Neurosciences, 1992, 15, 66-71.	4.2	166
47	Correlated electrophysiological and histochemical studies of submucous neurons and their contribution to understanding enteric neural circuits. Journal of the Autonomic Nervous System, 1988, 25, 1-13.	1.9	164
48	Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their numbers and projections. Cell and Tissue Research, 1990, 260, 261-272.	1.5	164
49	Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. , 1996, 367, 342-351.		161
50	The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterology and Motility, 2011, 23, 980-988.	1.6	154
51	An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience, 1980, 5, 841-852.	1.1	153
52	The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterology and Motility, 2008, 20, 32-38.	1.6	153
53	Co-localization of neuropeptide Y, vasoactive intestinal polypeptide and dynorphin in non-noradrenergic axons of the guinea pig uterine artery. Neuroscience Letters, 1985, 62, 31-37.	1.0	152
54	Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tract. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 332, 79-88.	1.4	152

#	Article	IF	CITATIONS
55	Aqueous aldehyde (Faglu) methods for the fluorescence histochemical localization of catecholamines and for ultrastructural studies of central nervous tissue. Histochemistry, 1978, 57, 285-295.	1.9	148
56	THE SITES OF ACTION OF 5-HYDROXYTRYPTAMINE IN NERVE-MUSCLE PREPARATIONS FROM THE GUINEA-PIG SMALL INTESTINE AND COLON. British Journal of Pharmacology, 1979, 65, 237-248.	2.7	148
57	Chemical Coding of Neurons and Plurichemical Transmission. Annual Review of Pharmacology and Toxicology, 1989, 29, 289-306.	4.2	148
58	Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for calcium binding proteins. Journal of the Autonomic Nervous System, 1988, 22, 141-150.	1.9	144
59	The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterology and Motility, 2010, 22, 7-18.	1.6	143
60	Opioid Agonists Have Different Efficacy Profiles for G Protein Activation, Rapid Desensitization, and Endocytosis of Mu-opioid Receptors. Journal of Biological Chemistry, 2003, 278, 18776-18784.	1.6	142
61	Distribution of enteric nerve cell bodies and axons showing immunoreactivity for vasoactive intestinal polypeptide in the guinea-pig intestine. Neuroscience, 1980, 5, 587-596.	1.1	141
62	Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Human Pathology, 2007, 38, 1256-1264.	1.1	138
63	Transplanted progenitors generate functional enteric neurons in the postnatal colon. Journal of Clinical Investigation, 2013, 123, 1182-1191.	3.9	138
64	Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves. Journal of Physiology, 1974, 239, 75-88.	1.3	134
65	Projections of intestinal neurons showing immunoreactivity for vasoactive intestinal polypeptide are consistent with these neurons being the enteric inhibitory neurons. Neuroscience Letters, 1979, 15, 199-204.	1.0	134
66	Depletion by capsaicin of substance P-immunoreactivity and acetylcholinesterase activity from nerve fibres in the guinea-pig heart. Neuroscience Letters, 1981, 27, 47-53.	1.0	132
67	Substance P enteric neurons mediate non-colinergic transmission to the circular muscle of the guinea-pig intestine. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 328, 446-453.	1.4	131
68	Substance P immunoreactive sensory nerves supply the rat iris and cornea. Neuroscience Letters, 1981, 23, 243-249.	1.0	130
69	Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heatâ€stressed pigs. Experimental Physiology, 2016, 101, 801-810.	0.9	129
70	Innervation of the large arteries and heart of the toad (Bufo marinus) by adrenergic and peptide-containing neurons. Cell and Tissue Research, 1986, 243, 171-84.	1.5	125
71	Simultaneous intracellular recordings from enteric neurons reveal that myenteric ah neurons transmit via slow excitatory postsynaptic potentials. Neuroscience, 1993, 55, 685-694.	1.1	124
72	Distension-evoked ascending and descending reflexes in the circular muscle of guinea-pig ileum: an intracellular study. Journal of the Autonomic Nervous System, 1990, 29, 203-217.	1.9	123

#	Article	IF	CITATIONS
73	Vasoactive intestinal peptide-like immunoreactivity in nerves associated with the cardiovascular system of guinea-pigs. Neuroscience, 1983, 9, 605-619.	1.1	122
74	Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons. Cell and Tissue Research, 1987, 250, 607-15.	1.5	119
75	Synaptic responses evoked by mechanical stimulation of the mucosa in morphologically characterized myenteric neurons of the guinea-pig ileum. Journal of Neuroscience, 1991, 11, 505-518.	1.7	119
76	Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. Journal of Comparative Neurology, 2004, 468, 112-124.	0.9	119
77	Tachykinins and their functions in the gastrointestinal tract. Cellular and Molecular Life Sciences, 2008, 65, 295-311.	2.4	115
78	The distribution of purine P2X2 receptors in the guinea-pig enteric nervous system. Histochemistry and Cell Biology, 2002, 117, 415-422.	0.8	114
79	An electrophysiological study of the innervation of the smooth muscle of the colon. Journal of Physiology, 1969, 205, 549-562.	1.3	113
80	Nitric oxide synthase in the enteric nervous system of the guinea-pig: a quantitative description. Cell and Tissue Research, 1994, 277, 139-149.	1.5	112
81	Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell and Tissue Research, 1998, 294, 35-43.	1.5	112
82	Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell and Tissue Research, 2004, 317, 1-12.	1.5	112
83	Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurones of guinea-pig small intestine Journal of Physiology, 1984, 351, 313-325.	1.3	111
84	Evidence that some intrinsic neurons of the intestine contain somatostatin. Neuroscience Letters, 1977, 6, 215-222.	1.0	109
85	Investigation of the presence of ghrelin in the central nervous system of the rat and mouse. Neuroscience, 2011, 193, 1-9.	1.1	107
86	Distribution and projections of neurons with immunoreactivity for both gastrin-releasing peptide and bombesin in the guinea-pig small intestine. Cell and Tissue Research, 1984, 235, 285-93.	1.5	106
87	Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. Journal of Physiology, 2006, 576, 329-338.	1.3	106
88	The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Autonomic Neuroscience: Basic and Clinical, 2002, 101, 39-47.	1.4	103
89	Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 38-48.	8.2	103
90	Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 89-105.	8.2	102

#	Article	IF	CITATIONS
91	The organisation of the autonomic nervous system: Peripheral connections. Autonomic Neuroscience: Basic and Clinical, 2006, 130, 1-5.	1.4	101
92	Nitric oxide targets in the guinea-pig intestine identified by induction of cyclic GMP immunoreactivity. Neuroscience, 1993, 55, 583-596.	1.1	99
93	Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience, 2007, 144, 208-216.	1.1	98
94	Somatostatin is contained in and released from cholinergic nerves in the heart of the toad bufo marinus. Neuroscience, 1982, 7, 2013-2023.	1.1	97
95	Activation of neurokinin 1 receptors on interstitial cells of Cajal of the guinea-pig small intestine by substance P. Histochemistry and Cell Biology, 1998, 110, 263-271.	0.8	95
96	Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell and Tissue Research, 2009, 336, 179-189.	1.5	95
97	Novel and Conventional Receptors for Ghrelin, Desacyl-Ghrelin, and Pharmacologically Related Compounds. Pharmacological Reviews, 2014, 66, 984-1001.	7.1	93
98	Evidence that two forms of choline acetyltransferase are differentially expressed in subclasses of enteric neurons. Cell and Tissue Research, 2003, 311, 11-22.	1.5	92
99	3 Gastrointestinal neurotransmitters. Bailliere's Clinical Endocrinology and Metabolism, 1994, 8, 51-76.	1.0	91
100	Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons. Journal of Physiology, 1999, 517, 547-561.	1.3	90
101	Evidence that nitric oxide participates in non-adrenergic inhibitory transmission to intestinal muscle in the guinea-pig. Neuroscience Letters, 1991, 130, 77-80.	1.0	85
102	Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell and Tissue Research, 1997, 289, 1-9.	1.5	84
103	Morphology and distribution of intrinsic adrenergic neurones in the proximal colon of the guinea-pig. Cell and Tissue Research, 1971, 120, 346-363.	1.5	83
104	The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterology and Motility, 2018, 30, e13234.	1.6	83
105	Transient Receptor Potential Ankyrin 1 Is Expressed by Inhibitory Motoneurons of the Mouse Intestine. Gastroenterology, 2011, 141, 565-575.e4.	0.6	81
106	Distribution of neurokinin-2 receptors in the guinea-pig gastrointestinal tract. Cell and Tissue Research, 1996, 286, 281-292.	1.5	79
107	Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. Journal of Physiology, 2012, 590, 2375-2390.	1.3	74
108	Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. Journal of the Autonomic Nervous System, 1999, 76, 45-61.	1.9	73

#	Article	IF	CITATIONS
109	Analysis of wholeâ€cell currents by patch clamp of guineaâ€pig myenteric neurones in intact ganglia. Journal of Physiology, 2002, 538, 447-463.	1.3	73
110	Ultrastructural examination of the targets of serotoninn immunoreactive descending interneurons in the guinea pig small intestine. Journal of Comparative Neurology, 1995, 356, 101-114.	0.9	72
111	Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Autonomic Neuroscience: Basic and Clinical, 2006, 125, 81-85.	1.4	72
112	Light- and electron-microscopic immunochemical analysis of nerve fibre types innervating the taenia of the guinea-pig caecum. Cell and Tissue Research, 1992, 270, 125-137.	1.5	70
113	Distribution of enteric nerve cells that project to the coeliac ganglion of the guinea-pig. Cell and Tissue Research, 1992, 269, 119-132.	1.5	70
114	On the possibility that an indoleamine is a neurotransmitter in the gastrointestinal tract. Biochemical Pharmacology, 1979, 28, 565-571.	2.0	69
115	GABA and nitric oxide synthase immunoreactivities are colocalized in a subset of inhibitory motor neurons of the guinea-pig small intestine. Cell and Tissue Research, 1996, 284, 29-37.	1.5	69
116	Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell and Tissue Research, 1999, 297, 241-248.	1.5	69
117	Betaine and Antioxidants Improve Growth Performance, Breast Muscle Development and Ameliorate Thermoregulatory Responses to Cyclic Heat Exposure in Broiler Chickens. Animals, 2018, 8, 162.	1.0	68
118	Histochemical, pharmacological, biochemical and chromatographic evidence that pituitary adenylyl cyclase activating peptide is involved in inhibitory neurotransmission in the taenia of the guinea-pig caecum. Journal of the Autonomic Nervous System, 1995, 50, 311-322.	1.9	67
119	Anatomical evidence for ileal Peyer's patches innervation by enteric nervous system: a potential route for prion neuroinvasion?. Cell and Tissue Research, 2008, 332, 185-194.	1.5	66
120	Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology, 1998, 115, 909-918.	0.6	65
121	Integrated Neural and Endocrine Control of Gastrointestinal Function. Advances in Experimental Medicine and Biology, 2016, 891, 159-173.	0.8	65
122	Interactions between reflexes evoked by distension and mucosal stimulation: Electrophysiological studies of guinea-pig ileum. Journal of the Autonomic Nervous System, 1991, 34, 69-75.	1.9	64
123	Influence of the mucosa on the excitability of myenteric neurons. Neuroscience, 1997, 76, 619-634.	1.1	62
124	Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience, 1997, 82, 899-914.	1.1	62
125	Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell and Tissue Research, 2014, 356, 77-82.	1.5	62
126	Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience, 1998, 86, 679-694.	1.1	61

#	Article	IF	CITATIONS
127	Long-term effects of synaptic activation at low frequency on excitability of myenteric AH neurons. Neuroscience, 1999, 90, 279-289.	1.1	61
128	Analysis of purinergic and cholinergic fast synaptic transmission to identified myenteric neurons. Neuroscience, 2003, 116, 335-347.	1.1	61
129	Anti-inflammatory Effects of Abdominal Vagus Nerve Stimulation on Experimental Intestinal Inflammation. Frontiers in Neuroscience, 2019, 13, 418.	1.4	61
130	Projection of ventrolateral medullary (A1) catecholamine neurons toward nucleus tractus solitarii. Cell and Tissue Research, 1981, 220, 27-40.	1.5	59
131	Identification of neurons that express 5-hydroxytryptamine4 receptors in intestine. Cell and Tissue Research, 2006, 325, 413-422.	1.5	59
132	Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2016, 22, 8026.	1.4	59
133	Neurones localized with antibodies against choline acetyltransferase in the enteric nervous system. Neuroscience Letters, 1983, 40, 105-109.	1.0	58
134	TEA―and apaminâ€resistant K Ca channels in guineaâ€pig myenteric neurons: slow AHP channels. Journal of Physiology, 2002, 538, 421-433.	1.3	58
135	Phenotypic changes of morphologically identified guineaâ€pig myenteric neurons following intestinal inflammation. Journal of Physiology, 2007, 583, 593-609.	1.3	58
136	Appositions made by axons of descending interneurons in the guinea-pig small intestine, investigated by confocal microscopy. Journal of Chemical Neuroanatomy, 1997, 12, 151-164.	1.0	57
137	Relationships between NADPH diaphorase staining and neuronal, endothelial, and inducible nitric oxide synthase and cytochrome P450 reductase immunoreactivities in guinea-pig tissues. Histochemistry and Cell Biology, 1997, 107, 19-29.	0.8	57
138	An electrophysiological study of the projections of putative sensory neurons within the myenteric plexus of the guinea pig ileum. Neuroscience Letters, 1990, 110, 286-290.	1.0	56
139	Electrical mapping of the projections of intrinsic primary afferent neurones to the mucosa of the guineaâ€pig small intestine. Neurogastroenterology and Motility, 1998, 10, 533-542.	1.6	56
140	Comparison of the effects of neurokinin-3 receptor blockade on two forms of slow synaptic transmission in myenteric AH neurons. Neuroscience, 2001, 104, 263-269.	1.1	56
141	P2X2 purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell and Tissue Research, 2003, 312, 167-174.	1.5	56
142	Expression of intermediate conductance potassium channel immunoreactivity in neurons and epithelial cells of the rat gastrointestinal tract. Cell and Tissue Research, 2003, 314, 179-189.	1.5	56
143	Ultrastructural identification of noradrenergic axons and their distribution within the enteric plexuses of the guinea-pig small intestine. Journal of Neurocytology, 1981, 10, 331-352.	1.6	55
144	Morphologies and projections of defined classes of neurons in the submucosa of the guinea-pig small intestine. The Anatomical Record, 2003, 272A, 475-483.	2.3	55

#	Article	IF	CITATIONS
145	Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Cell and Tissue Research, 2006, 323, 183-196.	1.5	55
146	Novel therapeutic targets for enteric nervous system disorders. Trends in Pharmacological Sciences, 2007, 28, 473-481.	4.0	55
147	Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell and Tissue Research, 2014, 357, 63-69.	1.5	55
148	Morphological and chemical identification of neurons that project from the colon to the inferior mesenteric ganglia in the guinea-pig. Journal of the Autonomic Nervous System, 1990, 31, 203-210.	1.9	54
149	Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell and Tissue Research, 2015, 359, 693-698.	1.5	54
150	The distribution of intermediate-conductance, calcium-activated, potassium (IK) channels in epithelial cells. Journal of Anatomy, 2006, 208, 219-229.	0.9	52
151	Morphological and functional changes in guineaâ€pig neurons projecting to the ileal mucosa at early stages after inflammatory damage. Journal of Physiology, 2011, 589, 325-339.	1.3	52
152	Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochemistry and Cell Biology, 2018, 150, 693-702.	0.8	52
153	Electrophysiological and morphological classification of myenteric neurons in the proximal colon of the guinea-pig. Neuroscience, 1994, 60, 227-244.	1.1	51
154	Deleterious effects of intestinal ischemia/reperfusion injury in the mouse enteric nervous system are associated with protein nitrosylation. Cell and Tissue Research, 2011, 344, 111-123.	1.5	51
155	The origin and distribution of adrenergic nerve fibres in the guinea-pig colon. Histochemistry and Cell Biology, 1970, 21, 295-306.	0.8	50
156	The adrenergic innervation of the vessels supplying and draining the gastrointestinal tract. Cell and Tissue Research, 1971, 113, 67-82.	1.5	50
157	Neurons bearing NK 3 tachykinin receptors in the guinea-pig ileum revealed by specific binding of fluorescently labelled agonists. Histochemistry and Cell Biology, 1999, 112, 233-246.	0.8	49
158	Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. Cell and Tissue Research, 2002, 308, 339-346.	1.5	49
159	Nutritional strategies to alleviate heat stress in pigs. Animal Production Science, 2015, 55, 1391.	0.6	49
160	Absence of tyrosine hydroxylase activity and dopamine β-hydroxylase immunoreactivity in intrinsic nerves of the guinea-pig ileum. Neuroscience, 1979, 4, 305-310.	1.1	48
161	Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell and Tissue Research, 1988, 253, 647-56.	1.5	48
162	Identification of the populations of enteric neurons that have NK1 tachykinin receptors in the guinea-pig small intestine. Cell and Tissue Research, 1998, 294, 27-33.	1.5	48

#	Article	IF	CITATIONS
163	Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterology and Motility, 2004, 16, 24-27.	1.6	48
164	Molecular and functional analysis of hyperpolarisation-activated nucleotide-gated (HCN) channels in the enteric nervous system. Neuroscience, 2004, 129, 603-614.	1.1	48
165	Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterology and Motility, 2017, 29, e13101.	1.6	48
166	Intermediate-conductance calcium-activated potassium channels in enteric neurones of the mouse: pharmacological, molecular and immunochemical evidence for their role in mediating the slow afterhyperpolarization. Journal of Neurochemistry, 2004, 90, 1414-1422.	2.1	47
167	A quantitative approach to recording peristaltic activity from segments of rat small intestine in vivo. Neurogastroenterology and Motility, 2005, 17, 262-272.	1.6	47
168	Neurochemical Coding of the Enteric Nervous System in Chagasic Patients with Megacolon. Digestive Diseases and Sciences, 2007, 52, 2877-2883.	1.1	47
169	The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterology and Motility, 2010, 22, e127-37.	1.6	47
170	Characterisation of neurons expressing calbindin immunoreactivity in the ileum of the unweaned and mature sheep. Cell and Tissue Research, 2004, 318, 289-303.	1.5	46
171	Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience, 2009, 162, 453-461.	1.1	46
172	Mucosal distortion by compression elicits polarized reflexes and enhances responses of the circular muscle to distension in the small intestine. Journal of the Autonomic Nervous System, 1991, 35, 219-226.	1.9	45
173	Quantitation of neurokinin 1 receptor internalization and recycling in guinea-pig myenteric neurons. Neuroscience, 1998, 87, 925-931.	1.1	45
174	Costorage of Enteroendocrine Hormones Evaluated at the Cell and Subcellular Levels in Male Mice. Endocrinology, 2017, 158, 2113-2123.	1.4	45
175	Origins of nerve terminals containing nitric oxide synthase in the guinea-pig coeliac ganglion. Journal of the Autonomic Nervous System, 1994, 46, 47-54.	1.9	44
176	Effects of vagal and splanchnic section on food intake, weight, serum leptin and hypothalamic neuropeptide Y in rat. Autonomic Neuroscience: Basic and Clinical, 2001, 92, 28-36.	1.4	43
177	Effects of pre- and postnatal protein deprivation and postnatal refeeding on myenteric neurons of the rat large intestine: a quantitative morphological study. Cell and Tissue Research, 2002, 310, 1-7.	1.5	43
178	Catecholamine containing nerve cells in the mammalian myenteric plexus. Histochemie Histochemistry Histochimie, 1971, 25, 103-106.	1.3	42
179	Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum. Cell and Tissue Research, 2001, 305, 3-9.	1.5	42
180	Functional and in situ hybridization evidence that preganglionic sympathetic vasoconstrictor neurons express ghrelin receptors. Neuroscience, 2010, 166, 671-679.	1.1	42

#	Article	IF	CITATIONS
181	Contrasting effects of ghrelin and des-acyl ghrelin on the lumbo-sacral defecation center and regulation of colorectal motility in rats. Neurogastroenterology and Motility, 2010, 22, 1124-1131.	1.6	41
182	Sites of action of ghrelin receptor ligands in cardiovascular control. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1011-H1021.	1.5	41
183	Terminal axons ensheathed in smooth muscle cells of the vas deferens. Cell and Tissue Research, 1971, 113, 259-270.	1.5	40
184	Comparison of the presence and actions of substance P and neurokinin A in guinea-pig taenia coli. Neuropeptides, 1991, 19, 23-34.	0.9	40
185	Chemical coding of neurons that project from different regions of intestine to the coeliac ganglion of the guinea pig. Journal of the Autonomic Nervous System, 1995, 56, 15-25.	1.9	40
186	Relationship of NK3 receptor- immunoreactivity to subpopulations of neurons in rat spinal cord. , 1997, 381, 439-448.		40
187	Structural changes in the epithelium of the small intestine and immune cell infiltration of enteric ganglia following acute mucosal damage and local inflammation. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 455, 55-65.	1.4	40
188	The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell and Tissue Research, 2016, 364, 489-497.	1.5	40
189	The excitatory input to a single smooth muscle cell. Pflugers Archiv European Journal of Physiology, 1970, 314, 1-13.	1.3	39
190	Characterization of substance P-like immunoreactivity in peripheral sensory nerves and enteric nerves by high pressure liquid chromatography and radioimmunoassay. Regulatory Peptides, 1982, 4, 203-212.	1.9	39
191	Movement of villi induces endocytosis of NK1 receptors in myenteric neurons from guinea-pig ileum. Cell and Tissue Research, 1998, 292, 37-45.	1.5	39
192	The reactions of specific neuron types to intestinal ischemia in the guinea pig enteric nervous system. Acta Neuropathologica, 2009, 118, 261-270.	3.9	39
193	Localization of catecholamine fluorescence and retrogradely transported horseradish peroxidase within the same nerve cell. Neuroscience Letters, 1978, 9, 311-315.	1.0	38
194	Effects of modulators of Ca2+-activated, intermediate-conductance potassium channels on motility of the rat small intestine, in vivo. Neurogastroenterology and Motility, 2007, 19, 383-389.	1.6	38
195	Oral administration of a centrally acting ghrelin receptor agonist to conscious rats triggers defecation. Neurogastroenterology and Motility, 2009, 21, 71-77.	1.6	38
196	Rhythm of digestion: keeping time in the gastrointestinal tract. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1041-1048.	0.9	38
197	Calcitonin gene-related peptide neurons innervating the canine digestive system. Regulatory Peptides, 1992, 42, 15-26.	1.9	37
198	Regulation of K+ channels underlying the slow afterhyperpolarization in enteric afterhyperpolarization-generating myenteric neurons: Role of calcium and phosphorylation. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 935-943.	0.9	37

#	Article	IF	CITATIONS
199	Morphometric study of eosinophils, mast cells, macrophages and fibrosis in the colon of chronic chagasic patients with and without megacolon. Parasitology, 2007, 134, 789-796.	0.7	37
200	COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of digestion1. Journal of Animal Science, 2015, 93, 485-491.	0.2	36
201	Quantitative analysis of inputs to somatostatin-immunoreactive descending interneurons in the myenteric plexus of the guinea-pig small intestine. Cell and Tissue Research, 1998, 294, 219.	1.5	35
202	Legumain is activated in macrophages during pancreatitis. American Journal of Physiology - Renal Physiology, 2016, 311, G548-G560.	1.6	35
203	Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord, 2018, 56, 199-205.	0.9	35
204	Storage, uptake and synthesis of catecholamines in the intrinsic adrenergic neurones in the proximal colon of the guinea-pig. Cell and Tissue Research, 1971, 120, 364-385.	1.5	34
205	Damaging effects of ischemia/reperfusion on intestinal muscle. Cell and Tissue Research, 2011, 343, 411-419.	1.5	34
206	Biomedical studies on temporal bones of the first multi-channel cochlear implant patient at the University of Melbourne. Cochlear Implants International, 2014, 15, S1-S15.	0.5	34
207	PKA-mediated inhibition of a novel K+ channel underlies the slow after-hyperpolarization in enteric AH neurons. Journal of Physiology, 2003, 548, 801-814.	1.3	34
208	Monoamine oxidase histochemistry of enteric neurones in the guinea-pig. Histochemie Histochemistry Histochimie, 1971, 28, 324-336.	1.3	33
209	Aspects of the arrangement of the adrenergic innervation in guinea-pigs as revealed by the fluorescence histochemical method applied to stretched, air-dried preparations. Histochemie Histochemie, 1971, 25, 297-309.	1.3	33
210	Calbindin immunoreactivity in sensory and autonomic ganglia in the guinea pig. Neuroscience Letters, 1990, 115, 68-73.	1.0	33
211	Glial fibrillary acidic protein and S-100 colocalization in the enteroglial cells in dilated and nondilated portions of colon from chagasic patients. Human Pathology, 2009, 40, 244-251.	1.1	33
212	Distribution and characterisation of CCK containing enteroendocrine cells of the mouse small and large intestine. Cell and Tissue Research, 2017, 369, 245-253.	1.5	33
213	Characterization of 5-HT receptors mediating contraction and relaxation of the longitudinal muscle of guinea-pig distal colon in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 455-462.	1.4	32
214	Origins of cholinergic inputs to the cell bodies of intestinofugal neurons in the guinea pig distal colon. , 2000, 416, 451-460.		32
215	Inputs from intrinsic primary afferent neurons to nitric oxide synthase-immunoreactive neurons in the myenteric plexus of guinea pig ileum. Cell and Tissue Research, 2000, 299, 1-8.	1.5	32
216	Comparison of the effects of phorbol dibutyrate and low-frequency stimulation of synaptic inputs on the excitability of myenteric AH neurons. Pflugers Archiv European Journal of Physiology, 2003, 447, 298-304.	1.3	32

#	Article	IF	CITATIONS
217	Correlation of electrophysiology, shape and synaptic properties of myenteric AH neurons of the guinea pig distal colon. Autonomic Neuroscience: Basic and Clinical, 2003, 103, 50-64.	1.4	32
218	Protein kinases expressed by interstitial cells of Cajal. Histochemistry and Cell Biology, 2004, 121, 21-30.	0.8	32
219	Sympathetic innervation of the ileocecal junction in horses. Journal of Comparative Neurology, 2010, 518, 4046-4066.	0.9	32
220	The brain to gut pathway: a possible route of prion transmission. Gut, 2010, 59, 1643-1651.	6.1	32
221	Stimulation of defecation in spinal cord-injured rats by a centrally acting ghrelin receptor agonist. Spinal Cord, 2011, 49, 1036-1041.	0.9	32
222	The ultrastructure of paraganglia associated with the inferior mesenteric ganglia in the guinea-pig. Cell and Tissue Research, 1976, 171, 123-39.	1.5	31
223	Protein kinaseï;½C isoforms in the enteric nervous system. Histochemistry and Cell Biology, 2003, 120, 51-61.	0.8	31
224	The relationship between glial distortion and neuronal changes following intestinal ischemia and reperfusion. Neurogastroenterology and Motility, 2011, 23, e500-e509.	1.6	31
225	Knock out of neuronal nitric oxide synthase exacerbates intestinal ischemia/reperfusion injury in mice. Cell and Tissue Research, 2012, 349, 565-576.	1.5	31
226	The mechanism of enhanced defecation caused by the ghrelin receptor agonist, ulimorelin. Neurogastroenterology and Motility, 2014, 26, 264-271.	1.6	31
227	Distribution and actions of galanin and vasoactive intestinal peptide in the human colon. Neuropeptides, 1990, 16, 77-82.	0.9	30
228	A selective, high affinity 5-HT _{2B} receptor antagonist inhibits visceral hypersensitivity in rats. Neurogastroenterology and Motility, 2010, 22, e69-e76.	1.6	30
229	Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism. Breast Cancer Research and Treatment, 2014, 147, 193-201.	1.1	30
230	Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine. Nutrients, 2016, 8, 623.	1.7	30
231	Analysis of enteroendocrine cell populations in the human colon. Cell and Tissue Research, 2017, 367, 161-168.	1.5	30
232	Dietary Betaine Improves Intestinal Barrier Function and Ameliorates the Impact of Heat Stress in Multiple Vital Organs as Measured by Evans Blue Dye in Broiler Chickens. Animals, 2020, 10, 38.	1.0	30
233	Effects of protein deprivation and re-feeding on P2X ₂ receptors in enteric neurons. World Journal of Gastroenterology, 2010, 16, 3651.	1.4	30
234	ERYTHROMYCIN DERIVATIVES ABT 229 AND GM 611 ACT ON MOTILIN RECEPTORS IN THE RABBIT DUODENUM. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 242-245.	0.9	29

#	Article	IF	CITATIONS
235	Internalization of the neurokinin 1 receptor in rat myenteric neurons. Neuroscience, 1999, 91, 353-362.	1.1	29
236	Independent endocytosis of the NK1 and NK3 tachykinin receptors in neurons of the rat myenteric plexus. Neuroscience, 2000, 100, 191-199.	1.1	29
237	Identification of intestinofugal neurons projecting to the coeliac and superior mesenteric ganglia in the rat. Autonomic Neuroscience: Basic and Clinical, 2000, 83, 81-85.	1.4	29
238	Responses of myenteric S neurones to low frequency stimulation of their synaptic inputs. Neuroscience, 2002, 110, 361-373.	1.1	29
239	Action potential afterdepolarization mediated by a Ca2+-activated cation conductance in myenteric AH neurons. Neuroscience, 2002, 115, 375-393.	1.1	29
240	Effects of Compounds That Influence IK (KCNN4) Channels on Afterhyperpolarizing Potentials, and Determination of IK Channel Sequence, in Guinea Pig Enteric Neurons. Journal of Neurophysiology, 2007, 97, 2024-2031.	0.9	29
241	The roles of purinergic signaling during gastrointestinal inflammation. Current Opinion in Pharmacology, 2012, 12, 659-666.	1.7	28
242	The Evolving Science of Cochlear Implants. JAMA - Journal of the American Medical Association, 2013, 310, 1225.	3.8	28
243	Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis. British Journal of Pharmacology, 1999, 126, 131-136.	2.7	26
244	Intrinsic nerve circuits of the gastrointestinal tract: identification of drug targets. Current Opinion in Pharmacology, 2002, 2, 612-622.	1.7	26
245	Controlling the excitability of IPANs: a possible route to therapeutics. Current Opinion in Pharmacology, 2002, 2, 657-664.	1.7	26
246	Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell and Tissue Research, 2019, 376, 37-49.	1.5	26
247	Evidence for functional NK1-tachykinin receptors on motor neurones supplying the circular muscle of guinea-pig small and large intestine. Neurogastroenterology and Motility, 2000, 12, 307-315.	1.6	25
248	Primary afferent neurons intrinsic to the guinea-pig intestine, like primary afferent neurons of spinal and cranial sensory ganglia, bind the lectin, IB4. Cell and Tissue Research, 2005, 321, 151-157.	1.5	25
249	Morphology and Neurochemistry of Descending and Ascending Myenteric Plexus Neurons of Sheep lleum. Anatomical Record, 2007, 290, 1480-1491.	0.8	25
250	Restoration of intestinal function in an MPTP model of Parkinson's Disease. Scientific Reports, 2016, 6, 30269.	1.6	25
251	The identification of neuronal control pathways supplying effector tissues in the stomach. Cell and Tissue Research, 2020, 382, 433-445.	1.5	25
252	Electrophysiological characteristics distinguish three classes of neuron in submucosal ganglia of the guinea-pig distal colon. Neuroscience, 2001, 103, 245-255.	1.1	24

#	Article	IF	CITATIONS
253	Motor patterns and propulsion in the rat intestine in vivo recorded by spatio-temporal maps. Neurogastroenterology and Motility, 2005, 17, 714-720.	1.6	24
254	Evidence for prion protein expression in enteroglial cells of the myenteric plexus of mouse intestine. Autonomic Neuroscience: Basic and Clinical, 2008, 140, 17-23.	1.4	24
255	Selenium-Enriched Agaricus bisporus Mushroom Protects against Increase in Gut Permeability ex vivo and Up-Regulates Glutathione Peroxidase 1 and 2 in Hyperthermally-Induced Oxidative Stress in Rats. Nutrients, 2014, 6, 2478-2492.	1.7	24
256	Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells. Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 49-53.	1.2	24
257	Ultrastructure and synaptology of neurons immunoreactive for gamma-aminobutyric acid in the myenteric plexus of the guinea pig small intestine. Journal of Neurocytology, 1990, 19, 539-549.	1.6	23
258	Motor innervation by enteric nerve fibers containing both nitric oxide synthase and galanin immunoreactivities in the striated muscle of the rat esophagus. Cell and Tissue Research, 1999, 295, 241-245.	1.5	23
259	Neuronal plasticity of the enteric nervous system is correlated with chagasic megacolon development. Parasitology, 2008, 135, 1337-1342.	0.7	23
260	Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. Journal of Comparative Neurology, 2013, 521, 2680-2702.	0.9	23
261	Ghrelin and Breast Cancer: Emerging Roles in Obesity, Estrogen Regulation, and Cancer. Frontiers in Oncology, 2016, 6, 265.	1.3	23
262	Improved immunohistochemical visualization of central serotonin nerves after loading with 5,7-dihydroxytryptamine. Neuroscience Letters, 1982, 29, 1-6.	1.0	22
263	Calbindin-immunoreactive nerve terminals in the guinea pig coeliac ganglion originate from colonic nerve cells. Journal of the Autonomic Nervous System, 1991, 35, 133-142.	1.9	22
264	Gene expression and localization of GABAC receptors in neurons of the rat gastrointestinal tract. Neuroscience, 2001, 107, 181-189.	1.1	22
265	Intermediate conductance potassium (IK) channels occur in human enteric neurons. Autonomic Neuroscience: Basic and Clinical, 2004, 112, 93-97.	1.4	22
266	Effects of intestinal inflammation on specific subgroups of guinea-pig celiac ganglion neurons. Neuroscience Letters, 2008, 444, 231-235.	1.0	22
267	The adrenergic innervation of the cardio-vascular system of the lizard Trachysaurus rugosus. Cell and Tissue Research, 1970, 108, 150-176.	1.5	21
268	Intestinofugal neurons and sympathetic reflexes that bypass the central nervous system. Journal of Comparative Neurology, 2003, 455, 281-284.	0.9	21
269	Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a highâ€fat diet. Neurogastroenterology and Motility, 2014, 26, 1188-1199.	1.6	21
270	Pharmacokinetics of the ghrelin agonist capromorelin in a single ascending dose Phase-I safety trial in spinal cord-injured and able-bodied volunteers. Spinal Cord, 2015, 53, 103-108.	0.9	21

#	Article	IF	CITATIONS
271	Ghrelin and Motilin Control Systems in GI Physiology and Therapeutics. Handbook of Experimental Pharmacology, 2016, 239, 379-416.	0.9	21
272	Analysis of Bioavailability and Induction of Glutathione Peroxidase by Dietary Nanoelemental, Organic and Inorganic Selenium. Nutrients, 2021, 13, 1073.	1.7	21
273	Neuronal regulation of the gut immune system and neuromodulation for treating inflammatory bowel disease. FASEB BioAdvances, 2021, 3, 953-966.	1.3	21
274	Site and mechanism of the colokinetic action of the ghrelin receptor agonist, <scp>HM</scp> 01. Neurogastroenterology and Motility, 2015, 27, 1764-1771.	1.6	20
275	Postnatal maturation of the hyperpolarization-activated cation current, <i>I</i> _h , in trigeminal sensory neurons. Journal of Neurophysiology, 2011, 106, 2045-2056.	0.9	19
276	A ghrelin receptor agonist is an effective colokinetic in rats with dietâ€induced constipation. Neurogastroenterology and Motility, 2015, 27, 610-617.	1.6	19
277	Betaine and Isoquinoline Alkaloids Protect against Heat Stress and Colonic Permeability in Growing Pigs. Antioxidants, 2020, 9, 1024.	2.2	19
278	Stimulation of the neurokinin 3 receptor activates protein kinase Cε and protein kinase D in enteric neurons. American Journal of Physiology - Renal Physiology, 2008, 294, G1245-G1256.	1.6	18
279	Slow synaptic transmission in myenteric AH neurons from the inflamed guinea pig ileum. American Journal of Physiology - Renal Physiology, 2009, 297, G582-G593.	1.6	18
280	Ghrelin receptors are expressed by distal tubules of the mouse kidney. Cell and Tissue Research, 2011, 346, 135-139.	1.5	18
281	An X-ray fluorescence microscopic analysis of the tissue surrounding the multi-channel cochlear implant electrode array. Cochlear Implants International, 2016, 17, 129-131.	0.5	18
282	5-HT containing enteroendocrine cells characterised by morphologies, patterns of hormone co-expression, and relationships with nerve fibres in the mouse gastrointestinal tract. Histochemistry and Cell Biology, 2021, 155, 623-636.	0.8	18
283	Enteric nervous system. Scholarpedia Journal, 2007, 2, 4064.	0.3	18
284	The effect of external potassium ion concentration on autonomic neuro-muscular transmission. Pflugers Archiv European Journal of Physiology, 1970, 317, 310-326.	1.3	17
285	Investigation of PKC isoform-specific translocation and targeting of the current of the late afterhyperpolarizing potential of myenteric AH neurons. European Journal of Neuroscience, 2005, 21, 905-913.	1.2	17
286	The distribution of PKC isoforms in enteric neurons, muscle and interstitial cells of the human intestine. Histochemistry and Cell Biology, 2006, 126, 537-548.	0.8	17
287	Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor. British Journal of Pharmacology, 2014, 171, 1275-1286.	2.7	17
288	Investigation of nerve pathways mediating colorectal dysfunction in Parkinson's disease model produced by lesion of nigrostriatal dopaminergic neurons. Neurogastroenterology and Motility, 2020, 32, e13893.	1.6	17

#	Article	IF	CITATIONS
289	Do vasoactive intestinal peptide (VIP)-and nitric oxide synthase-immunoreactive terminals synapse exclusively with VIP cell bodies in the submucous plexus of the guinea-pig ileum?. Cell and Tissue Research, 1995, 281, 485-491.	1.5	16
290	Sensitization of enteric reflexes in the rat colon in vitro. Autonomic Neuroscience: Basic and Clinical, 2002, 97, 19-25.	1.4	16
291	Binding of Isolectin IB4 to Neurons of the Mouse Enteric Nervous System. Journal of Molecular Histology, 2006, 37, 61-68.	1.0	16
292	Evidence for functional ghrelin receptors on parasympathetic preganglionic neurons of micturition control pathways in the rat. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 926-932.	0.9	16
293	Suppression of a slow post-spike afterhyperpolarization by calcineurin inhibitors. European Journal of Neuroscience, 2004, 19, 2650-2658.	1.2	15
294	Inflammation and Inflammatory Agents Activate Protein Kinase C Îμ Translocation and Excite Guinea-Pig Submucosal Neurons. Gastroenterology, 2007, 133, 1229-1239.	0.6	15
295	Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell and Tissue Research, 2019, 378, 33-48.	1.5	15
296	The Effect of Heat Stress on Respiratory Alkalosis and Insulin Sensitivity in Cinnamon Supplemented Pigs. Animals, 2020, 10, 690.	1.0	15
297	Organisation of the musculature of the rat stomach. Journal of Anatomy, 2022, 240, 711-723.	0.9	15
298	Computer simulation of the enteric neural circuits mediating an ascending reflex: Roles of fast and slow excitatory outputs of sensory neurons. Journal of the Autonomic Nervous System, 1997, 64, 143-157.	1.9	14
299	Effects of the peripherally acting NK3 receptor antagonist, SB-235375, on intestinal and somatic nociceptive responses and on intestinal motility in anaesthetized rats. Neurogastroenterology and Motility, 2004, 16, 223-231.	1.6	14
300	Identification of subunits of voltage-gated calcium channels and actions of pregabalin on intrinsic primary afferent neurons in the guinea-pig ileum. Neurogastroenterology and Motility, 2010, 22, e301-e308.	1.6	14
301	Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord. Cell and Tissue Research, 2012, 348, 397-405.	1.5	14
302	Evidence that central pathways that mediate defecation utilize ghrelin receptors but do not require endogenous ghrelin. Physiological Reports, 2017, 5, e13385.	0.7	14
303	Analysis of factors that determine the compliance of rat jejunum to distension in vivo. Neurogastroenterology and Motility, 2003, 15, 417-425.	1.6	13
304	PKC Î'-isoform translocation and enhancement of tonic contractions of gastrointestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2007, 292, G887-G898.	1.6	13
305	Substance P and NK1 receptor expression in the enteric nervous system is related to the development of chagasic megacolon. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 1154-1156.	0.7	13
306	Developing a spinal cord injury research strategy using a structured process of evidence review and stakeholder dialogue. Part III: outcomes. Spinal Cord, 2015, 53, 729-737.	0.9	13

#	Article	IF	CITATIONS
307	Distribution and co-expression patterns of specific cell markers of enteroendocrine cells in pig gastric epithelium. Cell and Tissue Research, 2019, 378, 457-469.	1.5	13
308	Post-stimulus depression of reflex changes in circular muscle activity in the guinea pig small intestine. Journal of the Autonomic Nervous System, 1992, 40, 171-180.	1.9	12
309	Prominent contribution of L-type Ca2+ channels to cutaneous neurovascular transmission that is revealed after spinal cord injury augments vasoconstriction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H752-H762.	1.5	12
310	Surgical Intervention to Rescue Hirschsprung Disease in a Rat Model. Journal of Neurogastroenterology and Motility, 2015, 21, 552-559.	0.8	12
311	Humans as cucinivores: comparisons with other species. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 825-834.	0.7	12
312	Colokinetic effect of an insulinâ€like peptide 5â€related agonist of the RXFP4 receptor. Neurogastroenterology and Motility, 2020, 32, e13796.	1.6	12
313	Morphologies and distributions of 5-HT containing enteroendocrine cells in the mouse large intestine. Cell and Tissue Research, 2021, 384, 275-286.	1.5	12
314	Branching patterns and projections of enteric neurons containing different putative transmitters. Peptides, 1981, 2, 119-122.	1.2	11
315	Marsupial possum neurotensin: a unique mammalian regulatory peptide exhibiting structural homology to the avian analogue. Regulatory Peptides, 1991, 35, 49-57.	1.9	11
316	Chapter VII Nitric oxide in the peripheral autonomic nervous system. Handbook of Chemical Neuroanatomy, 2000, , 215-265.	0.3	11
317	The Enteric Nervous System and Its Extrinsic Connections. , 0, , 15-39.		11
318	A Novel Antagonist Peptide Reveals a Physiological Role of Insulin-Like Peptide 5 in Control of Colorectal Function. ACS Pharmacology and Translational Science, 2021, 4, 1665-1674.	2.5	11
319	Regulation of the slow afterhyperpolarization in enteric neurons by protein kinase A. Autonomic Neuroscience: Basic and Clinical, 2006, 126-127, 258-263.	1.4	10
320	Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro. Frontiers in Neuroscience, 2014, 8, 301.	1.4	10
321	A Novel Mutation in Nucleoporin 35 Causes Murine Degenerative Colonic Smooth Muscle Myopathy. American Journal of Pathology, 2016, 186, 2254-2261.	1.9	10
322	Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum. Cell and Tissue Research, 2020, 379, 109-120.	1.5	10
323	Combined intracellular injection of Neurobiotin and pre-embedding immunocytochemistry using silver-intensified gold probes in myenteric neurons. Journal of Neuroscience Methods, 1994, 51, 39-45.	1.3	9
324	The relationship between propagated contractions and pseudoaffective changes in blood pressure in response to intestinal distension. Neurogastroenterology and Motility, 2001, 13, 575-584.	1.6	9

#	Article	IF	CITATIONS
325	Dopamine and ghrelin receptor coâ€expression and interaction in the spinal defecation centers. Neurogastroenterology and Motility, 2021, 33, e14051.	1.6	9
326	RESIDUAL CATECHOLAMINES IN EXTRINSICALLY DENERVATED GUINEA-PIG ILEUM. Clinical and Experimental Pharmacology and Physiology, 1981, 8, 327-333.	0.9	8
327	Calretinin immunoreactivity of motor neurons in the guinea-pig distal colon and taenia coli. Cell and Tissue Research, 1996, 284, 367-372.	1.5	8
328	Oligophrenin-1, a Rho GTPase-activating protein (RhoGAP) involved in X-linked mental retardation, is expressed in the enteric nervous system. The Anatomical Record, 2003, 273A, 671-676.	2.3	8
329	Evidence for protein kinase involvement in long-term postsynaptic excitation of intrinsic primary afferent neurons in the intestine. Autonomic Neuroscience: Basic and Clinical, 2004, 115, 1-6.	1.4	8
330	Defensive and pathological functions of the gastrointestinal NK3 receptor. Vascular Pharmacology, 2006, 45, 215-220.	1.0	8
331	Enteric Nervous System Structure and Neurochemistry Related to Function and Neuropathology. , 2012, , 557-581.		8
332	Transient expression of the calcitonin receptor by enteric neurons of the embryonic and early post-natal mouse. Cell and Tissue Research, 2012, 347, 311-317.	1.5	8
333	G protein oupled receptor interactions and modification of signalling involving the ghrelin receptor, GHSR1a. Journal of Neuroendocrinology, 2022, 34, e13077.	1.2	8
334	Analysis of the ghrelin receptor-independent vascular actions of ulimorelin. European Journal of Pharmacology, 2015, 752, 34-39.	1.7	7
335	The effect of high-fat diet-induced metabolic disturbance on corneal neuroimmune features. Experimental Eye Research, 2020, 201, 108298.	1.2	7
336	A new algorithm for drift compensation in multi-unit recordings of action potentials in peripheral autonomic nerves over time. Journal of Neuroscience Methods, 2020, 338, 108683.	1.3	7
337	Sources of inputs to longitudinal muscle motor neurons and ascending interneurons in the guinea-pig small intestine. Cell and Tissue Research, 1995, 280, 549-560.	1.5	7
338	Gastrointestinal neuropharmacology: identification of therapeutic targets. Current Opinion in Pharmacology, 2002, 2, 609-611.	1.7	6
339	The visceromotor responses to colorectal distension and skin pinch are inhibited by simultaneous jejunal distension. Pain, 2006, 123, 127-136.	2.0	6
340	Effects of NMDA receptor antagonists on visceromotor reflexes and on intestinal motility, in vivo. Neurogastroenterology and Motility, 2007, 19, 617-624.	1.6	6
341	Modulation of peristalsis by NK3receptor antagonism in guinea-pig isolated ileum is revealed as intraluminal pressure is raised. Autonomic and Autacoid Pharmacology, 2007, 27, 105-111.	0.5	6
342	High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system. Cell and Tissue Research, 2009, 335, 529-538.	1.5	6

#	Article	IF	CITATIONS
343	Signalling from the gut lumen. Animal Production Science, 2017, 57, 2175.	0.6	6
344	Autonomic neuromuscular junctions. Autonomic Neuroscience: Basic and Clinical, 2021, 234, 102816.	1.4	6
345	Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine. Neuroscience, 2008, 155, 738-750.	1.1	5
346	NONRUMINANT NUTRITION SYMPOSIUM: Involvement of gut neural and endocrine systems in pathological disorders of the digestive tract1,2. Journal of Animal Science, 2012, 90, 1203-1212.	0.2	5
347	Muscarinic receptor 1 allosteric modulators stimulate colorectal emptying in dog, mouse and rat and resolve constipation. Neurogastroenterology and Motility, 2019, 31, e13692.	1.6	5
348	Chronic isolation stress is associated with increased colonic and motor symptoms in the A53T mouse model of Parkinson's disease. Neurogastroenterology and Motility, 2020, 32, e13755.	1.6	5
349	Morphologies, dimensions and targets of gastric nitric oxide synthase neurons. Cell and Tissue Research, 2022, 388, 19-32.	1.5	5
350	ADRENALINE SYNTHESIZING NERVE CELLS IN THE MEDULLA OF NORMOTENSIVE AND HYPERTENSIVE RATS. Clinical and Experimental Pharmacology and Physiology, 1981, 8, 459-462.	0.9	4
351	Decreased expression of IK channels in neurons from enteric nervous system is associated with the development of chagasic megacolon. Human Pathology, 2008, 39, 1406-1407.	1.1	4
352	Stimulated smooth muscle neosphincter in male intrinsic sphincter deficiency: Proof of principle studies in a rabbit model. Neurourology and Urodynamics, 2010, 29, S24-8.	0.8	4
353	An objective in vivo diagnostic method for inflammatory bowel disease. Royal Society Open Science, 2018, 5, 180107.	1.1	4
354	Modeling experimental recordings of vagal afferent signaling of intestinal inflammation for neuromodulation. Journal of Neural Engineering, 2018, 15, 056032.	1.8	4
355	Effects and sites of action of a M1 receptor positive allosteric modulator on colonic motility in rats and dogs compared with 5â€HT 4 agonism and cholinesterase inhibition. Neurogastroenterology and Motility, 2020, 32, e13866.	1.6	4
356	Evidence that a major site of expression of the RHO-GTPASE activating protein, oligophrenin-1, is peripheral myelin. Neuroscience, 2004, 124, 781-787.	1.1	3
357	Identification of endocrine cells of the stomach that express acid-sensitive background potassium (K2P9.1/TASK3) channels. Journal of Molecular Histology, 2010, 41, 403-409.	1.0	3
358	Enteric Nervous System. , 2009, , 1122-1125.		3
359	Microcalorimetric study of substrate fixation on the Leucine-Isoleucine-Valine-binding protein from Escherichia coli. Biochemical and Biophysical Research Communications, 1977, 78, 377-382.	1.0	2
360	Re-innervation of smooth muscle that is transplanted to provide urethral sphincter augmentation. Autonomic Neuroscience: Basic and Clinical, 2011, 159, 71-76.	1.4	2

#	Article	IF	CITATIONS
361	The physiological relevance of constriction of mesenteric arteries by topically applied noradrenaline. Journal of Physiology, 2017, 595, 6783-6784.	1.3	2
362	Transmural impedance detects graded changes of inflammation in experimental colitis. Royal Society Open Science, 2020, 7, 191819.	1.1	2
363	Expression of the relaxin family peptide 4 receptor by enterochromaffin cells of the mouse large intestine. Cell and Tissue Research, 0, , .	1.5	2
364	More comment on Hirschsprung's disease. Diseases of the Colon and Rectum, 1972, 15, 311-312.	0.7	1
365	Identification of neurones involved in intestinal reflexes. Journal of the Autonomic Nervous System, 1991, 33, 199-200.	1.9	1
366	Distribution and chromatographic characterization of peptide tyrosine leucine amide (PYLa) immunoreactivity in mammalian tissues. Peptides, 1991, 12, 193-197.	1.2	1
367	Morphology and Neurochemical Expression of Neurons Immunoreactive for the Calcitonin Gene-Related Peptide (CGRP-IR) in the Lamb Ileum. Veterinary Research Communications, 2005, 29, 177-178.	0.6	1
368	Sensory Neurons of the Gastrointestinal Tract. , 0, , 40-55.		1
369	Enteric Nervous System: Sensory Pathways. , 2009, , 1115-1120.		1
370	Parasympathetic Nervous System. , 2009, , 445-446.		1
371	Enteric Nervous System: Neural Circuits and Chemical Coding. , 2009, , 1089-1095.		1
372	Design, synthesis and characterization of a fluorescently labeled functional analog of full-length human ghrelin. Biochemical and Biophysical Research Communications, 2020, 533, 559-564.	1.0	1
373	GABA-immunoreactive Dogiel type I neurones and their synaptic relations in myenteric ganglia of the guinea pig small intestine. Journal of the Autonomic Nervous System, 1991, 33, 187-188.	1.9	Ο
374	A novel nerve-muscle preparation, the inter-taenial longitudinal muscle of the guinea pig caecum. Journal of the Autonomic Nervous System, 1991, 33, 208.	1.9	0
375	New Roles of Serotonin and Tachykinins in Intestinal Mucositis?. Digestive Diseases and Sciences, 2013, 58, 3384-3385.	1.1	Ο
376	Autonomic Nervous System and Its Divisions: Sympathetic, Parasympathetic and Enteric. , 2008, , 268-272.		0