Paolo Zaffino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499532/publications.pdf

Version: 2024-02-01

29 1,041 16
papers citations h-index

26 g-index

29 29 all docs citations

29 times ranked 1365 citing authors

#	Article	IF	CITATIONS
1	CoroFinder: A New Tool for Real Time Detection and Tracking of Coronary Arteries in Contrast-Free Cine-Angiography. Journal of Personalized Medicine, 2022, 12, 411.	1.1	1
2	Algorithms to Preprocess Microarray Image Data. Methods in Molecular Biology, 2022, 2401, 69-78.	0.4	2
3	An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics. Bioengineering, 2021, 8, 26.	1.6	21
4	Metacognition and emotion regulation as treatment targets in binge eating disorder: a network analysis study. Journal of Eating Disorders, 2021, 9, 22.	1.3	20
5	Deep learning based synthetic T generation in radiotherapy and PET: A review. Medical Physics, 2021, 48, 6537-6566.	1.6	90
6	Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer. Medical Physics, 2021, 48, 7673-7684.	1.6	19
7	SlicerArduino: A Bridge between Medical Imaging Platform and Microcontroller. Bioengineering, 2020, 7, 109.	1.6	2
8	Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy. Physics in Medicine and Biology, 2020, 65, 095002.	1.6	59
9	A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future. Annals of Biomedical Engineering, 2020, 48, 2171-2191.	1.3	29
10	Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. International Journal of Molecular Sciences, 2020, 21, 1115.	1.8	70
11	Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Physics in Medicine and Biology, 2020, 65, 235036.	1.6	24
12	Evaluating the Impact of Training Loss on MR to Synthetic CT Conversion. Lecture Notes in Computer Science, 2020, , 563-573.	1.0	2
13	PD-0309: Comparison of CBCT based synthetic CT methods for adaptive proton therapy. Radiotherapy and Oncology, 2020, 152, S160-S161.	0.3	O
14	Fully automatic catheter segmentation in MRI with 3D convolutional neural networks: application to MRI-guided gynecologic brachytherapy. Physics in Medicine and Biology, 2019, 64, 165008.	1.6	47
15	Deep Convolution Neural Network (DCNN) Multiplane Approach to Synthetic CT Generation From MR images—Application in Brain ProtonÂTherapy. International Journal of Radiation Oncology Biology Physics, 2019, 105, 495-503.	0.4	71
16	Does a polarization state exist for mast cells in cancer?. Medical Hypotheses, 2019, 131, 109281.	0.8	9
17	Multi-organ segmentation of the head and neck area: an efficient hierarchical neural networks approach. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 745-754.	1.7	42
18	Using CNNs for Designing and Implementing an Automatic Vascular Segmentation Method of Biomedical Images. Lecture Notes in Computer Science, 2018, , 60-70.	1.0	9

#	Article	IF	CITATIONS
19	Innate Immunity Cells and the Neurovascular Unit. International Journal of Molecular Sciences, 2018, 19, 3856.	1.8	38
20	Multi atlas based segmentation: should we prefer the best atlas group over the group of best atlases?. Physics in Medicine and Biology, 2018, 63, 12NT01.	1.6	16
21	Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases. Breast, 2017, 32, 44-52.	0.9	40
22	Evaluation of segmentation methods on head and neck <scp>CT</scp> : Autoâ€segmentation challenge 2015. Medical Physics, 2017, 44, 2020-2036.	1.6	198
23	Technical Note: <scp>plastimatch mabs</scp> , an open source tool for automatic image segmentation. Medical Physics, 2016, 43, 5155-5160.	1.6	48
24	Deep Neural Networks for Fast Segmentation of 3D Medical Images. Lecture Notes in Computer Science, 2016, , 158-165.	1.0	55
25	Radiotherapy of Hodgkin and Non-Hodgkin Lymphoma. Technology in Cancer Research and Treatment, 2016, 15, 355-364.	0.8	7
26	SU-G-leP2-14: Validation of Plastimatch MABS, a Tool for Automatic Image Segmentation. Medical Physics, 2016, 43, 3658-3658.	1.6	1
27	Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Medical Physics, 2014, 41, 051910.	1.6	109
28	Contrast-Enhanced Proton Radiography for Patient Set-up by Using X-Ray CT Prior Knowledge. International Journal of Radiation Oncology Biology Physics, 2014, 90, 628-636.	0.4	12
29	1276 poster RADIOTHERAPY OF HODGKIN LYMPHOMA: A NON-RIGID REGISTRATION BASED METHOD FOR SEMIAUTOMATIC CTV LOCALIZATION. Radiotherapy and Oncology, 2011, 99, S475-S476.	0.3	0