Hein Sprong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2499247/publications.pdf Version: 2024-02-01

	31949	27389
13,324	53	106
citations	h-index	g-index
221	221	12138
docs citations	times ranked	citing authors
	13,324 citations 221 docs citations	13,32453citationsh-index221221docs citations121times ranked

HEIN SDRONC

#	Article	IF	CITATIONS
1	Food-borne diseases — The challenges of 20years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 2010, 139, S3-S15.	2.1	877
2	MDR1 P-Glycoprotein ls a Lipid Translocase of Broad Specificity, While MDR3 P-Glycoprotein Specifically Translocates Phosphatidylcholine. Cell, 1996, 87, 507-517.	13.5	858
3	Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites and Vectors, 2013, 6, 1.	1.0	684
4	Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature, 2005, 435, 58-65.	13.7	611
5	How proteins move lipids and lipids move proteins. Nature Reviews Molecular Cell Biology, 2001, 2, 504-513.	16.1	498
6	Identification of Zoonotic Genotypes of Giardia duodenalis. PLoS Neglected Tropical Diseases, 2009, 3, e558.	1.3	324
7	The Organizing Potential of Sphingolipids in Intracellular Membrane Transport. Physiological Reviews, 2001, 81, 1689-1723.	13.1	291
8	Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. Journal of Cell Biology, 2007, 179, 101-115.	2.3	257
9	A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet, The, 2013, 382, 658.	6.3	224
10	High-throughput screening of tick-borne pathogens in Europe. Frontiers in Cellular and Infection Microbiology, 2014, 4, 103.	1.8	209
11	Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites and Vectors, 2014, 7, 365.	1.0	207
12	A clear and present danger: tick-borne diseases in Europe. Expert Review of Anti-Infective Therapy, 2010, 8, 33-50.	2.0	201
13	Dermacentor reticulatus: a vector on the rise. Parasites and Vectors, 2016, 9, 314.	1.0	187
14	Direct detection and genotyping of Toxoplasma gondii in meat samples using magnetic capture and PCR. International Journal of Food Microbiology, 2010, 139, 193-201.	2.1	186
15	The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. Journal of Neurochemistry, 2005, 95, 1201-1214.	2.1	176
16	The diagnostic accuracy of serological tests for Lyme borreliosis in Europe: a systematic review and meta-analysis. BMC Infectious Diseases, 2016, 16, 140.	1.3	167
17	UDP-Galactose:Ceramide Galactosyltransferase Is a Class I Integral Membrane Protein of the Endoplasmic Reticulum. Journal of Biological Chemistry, 1998, 273, 25880-25888.	1.6	164
18	Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasites and Vectors, 2019, 12, 1.	1.0	163

#	Article	IF	CITATIONS
19	Membrane lipids and vesicular traffic. Current Opinion in Cell Biology, 2004, 16, 373-378.	2.6	161
20	Borrelia miyamotoi: a widespread tick-borne relapsing fever spirochete. Trends in Parasitology, 2015, 31, 260-269.	1.5	149
21	Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasites and Vectors, 2009, 2, 41.	1.0	141
22	Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. Journal of Cell Biology, 2001, 155, 369-380.	2.3	120
23	Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasites and Vectors, 2012, 5, 74.	1.0	117
24	ABC lipid transporters: Extruders, flippases, or flopless activators?. FEBS Letters, 2006, 580, 1171-1177.	1.3	110
25	Impacts of globalisation on foodborne parasites. Trends in Parasitology, 2014, 30, 37-52.	1.5	101
26	Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites and Vectors, 2016, 9, 97.	1.0	101
27	Transmission dynamics of <i><scp>B</scp>orrelia burgdorferi</i> s.l. in a bird tick community. Environmental Microbiology, 2013, 15, 663-673.	1.8	100
28	Association of the Golgi UDP-Galactose Transporter with UDP-Galactose:Ceramide Galactosyltransferase Allows UDP-Galactose Import in the Endoplasmic Reticulum. Molecular Biology of the Cell, 2003, 14, 3482-3493.	0.9	97
29	Mammalian Wnt3a is Released on Lipoprotein Particles. Traffic, 2009, 10, 334-343.	1.3	95
30	Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites and Vectors, 2018, 11, 145.	1.0	86
31	Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus. Frontiers in Cellular and Infection Microbiology, 2013, 3, 36.	1.8	85
32	Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands. PLoS Neglected Tropical Diseases, 2016, 10, e0005042.	1.3	85
33	Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Experimental and Applied Acarology, 2016, 68, 279-297.	0.7	84
34	Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasites and Vectors, 2019, 12, 328.	1.0	84
35	Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochemical Journal, 2006, 400, 315-325.	1.7	81
36	Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites and Vectors, 2019, 12, 229.	1.0	79

#	Article	IF	CITATIONS
37	Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks and Tick-borne Diseases, 2017, 8, 353-361.	1.1	77
38	Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. International Journal for Parasitology, 2018, 48, 729-742.	1.3	77
39	Continuing increase of tick bites and Lyme disease between 1994 and 2009. Ticks and Tick-borne Diseases, 2015, 6, 69-74.	1.1	76
40	Prevalence of <i>Coxiella Burnetii</i> in Ticks After a Large Outbreak of Q Fever. Zoonoses and Public Health, 2012, 59, 69-75.	0.9	75
41	Rabaptin-5alpha/rabaptin-4 serves as a linker between rab4 and gamma1-adaptin in membrane recycling from endosomes. EMBO Journal, 2003, 22, 2645-2657.	3.5	74
42	Towards an integrated approach in surveillance of vector-borne diseases in Europe. Parasites and Vectors, 2011, 4, 192.	1.0	73
43	Giardia duodenalis: Genetic recombination and its implications for taxonomy and molecular epidemiology. Experimental Parasitology, 2010, 124, 107-112.	0.5	66
44	<i>Borrelia miyamotoi</i> in host-seeking <i>lxodes ricinus</i> ticks in England. Epidemiology and Infection, 2015, 143, 1079-1087.	1.0	66
45	Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasites and Vectors, 2017, 10, 134.	1.0	65
46	Cascading effects of predator activity on tick-borne disease risk. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170453.	1.2	65
47	Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasites and Vectors, 2017, 10, 433.	1.0	65
48	Circumstantial evidence for an increase in the total number and activity of borrelia-infected ixodes ricinus in the Netherlands. Parasites and Vectors, 2012, 5, 294.	1.0	63
49	A Prospective Study among Patients Presenting at the General Practitioner with a Tick Bite or Erythema Migrans in the Netherlands. PLoS ONE, 2013, 8, e64361.	1.1	59
50	Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types in clinical manifestations of Lyme borreliosis. Infection, Genetics and Evolution, 2016, 42, 66-76.	1.0	59
51	Neglected vector-borne zoonoses in Europe: Into the wild. Veterinary Parasitology, 2018, 251, 17-26.	0.7	59
52	CandidatusNeoehrlichia mikurensis andAnaplasma phagocytophilumin Urban Hedgehogs. Emerging Infectious Diseases, 2014, 20, 496-8.	2.0	57
53	Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasites and Vectors, 2015, 8, 176.	1.0	57
54	Guidelines for the Direct Detection of <i>Anaplasma</i> spp. in Diagnosis and Epidemiological Studies. Vector-Borne and Zoonotic Diseases, 2017, 17, 12-22.	0.6	56

#	Article	IF	CITATIONS
55	Protein-sphingolipid interactions within cellular membranes. Journal of Lipid Research, 2008, 49, 251-262.	2.0	55
56	Prevalence and molecular typing of Giardia spp. in captive mammals at the zoo of Zagreb, Croatia. Veterinary Parasitology, 2011, 175, 40-46.	0.7	55
57	Variable Major Proteins as Targets for Specific Antibodies against <i>Borrelia miyamotoi</i> . Journal of Immunology, 2016, 196, 4185-4195.	0.4	55
58	Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasites and Vectors, 2020, 13, 34.	1.0	55
59	Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands. Emerging Infectious Diseases, 2017, 23, 1028-1030.	2.0	54
60	Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: A practical guide. Infection, Genetics and Evolution, 2018, 64, 178-184.	1.0	54
61	Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasites and Vectors, 2019, 12, 265.	1.0	54
62	Ticks and tick-borne diseases in the city: Role of landscape connectivity and green space characteristics in a metropolitan area. Science of the Total Environment, 2019, 670, 941-949.	3.9	54
63	Spotted fever group rickettsiae in Dermacentor reticulatus and Haemaphysalis punctata ticks in the UK. Parasites and Vectors, 2013, 6, 212.	1.0	53
64	Presence of zoonotic agents in engorged ticks and hedgehog faeces from Erinaceus europaeus in (sub) urban areas. Parasites and Vectors, 2015, 8, 210.	1.0	53
65	Role of sand lizards in the ecology of Lyme and other tick-borne diseases in the Netherlands. Parasites and Vectors, 2010, 3, 42.	1.0	52
66	High seroprevalence of Borrelia miyamotoi antibodies in forestry workers and individuals suspected of human granulocytic anaplasmosis in the Netherlands. New Microbes and New Infections, 2014, 2, 144-149.	0.8	52
67	High-resolution phylogeography of zoonotic tapeworm <i>Echinococcus granulosus</i> sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain. Parasitology, 2016, 143, 1790-1801.	0.7	51
68	Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasites and Vectors, 2015, 8, 309.	1.0	50
69	Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: a review. Parasites and Vectors, 2015, 8, 643.	1.0	50
70	Eco-epidemiology of Novel Bartonella Genotypes from Parasitic Flies of Insectivorous Bats. Microbial Ecology, 2018, 76, 1076-1088.	1.4	50
71	Tick-borne pathogens in Finland: comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasites and Vectors, 2018, 11, 556.	1.0	50
72	Small risk of developing symptomatic tick-borne diseases following a tick bite in the Netherlands. Parasites and Vectors, 2011, 4, 17.	1.0	49

#	Article	IF	CITATIONS
73	Genotyping <i>Giardia duodenalis</i> Isolates from Dogs: Lessons from a Multilocus Sequence Typing Study. Vector-Borne and Zoonotic Diseases, 2012, 12, 206-213.	0.6	48
74	Borrelia miyamotoi in vectors and hosts in The Netherlands. Ticks and Tick-borne Diseases, 2017, 8, 370-374.	1.1	48
75	ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasites and Vectors, 2014, 7, 77.	1.0	47
76	Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S–23S rDNA spacer region. Infection, Genetics and Evolution, 2013, 17, 216-222.	1.0	46
77	Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasites and Vectors, 2018, 11, 495.	1.0	46
78	Persistent Detection of <i>Babesia</i> EU1 and <i>Babesia microti</i> in <i>Ixodes ricinus</i> in The Netherlands During a 5-Year Surveillance: 2003–2007. Vector-Borne and Zoonotic Diseases, 2009, 9, 119-122.	0.6	45
79	Tick-Borne Pathogen ââ,¬â€œ Reversed and Conventional Discovery of Disease. Frontiers in Public Health, 2014, 2, 73.	1.3	45
80	Songbirds as general transmitters but selective amplifiers of <scp><i>B</i></scp> <i>orrelia burgdorferi</i> sensu lato genotypes in <scp><i>I</i></scp> <i>xodes rinicus</i> ticks. Environmental Microbiology, 2014, 16, 2859-2868.	1.8	45
81	Pathogen communities of songbird-derived ticks in Europe's low countries. Parasites and Vectors, 2017, 10, 497.	1.0	45
82	A Large Survey of Croatian Wild Mammals for <i>Giardia duodenalis</i> Reveals a Low Prevalence and Limited Zoonotic Potential. Vector-Borne and Zoonotic Diseases, 2011, 11, 1049-1055.	0.6	44
83	Parasites of vectors - Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasites and Vectors, 2011, 4, 228.	1.0	44
84	Co-infection of Borrelia burgdorferi sensu lato and Rickettsia species in ticks and in an erythema migrans patient. Parasites and Vectors, 2013, 6, 347.	1.0	44
85	Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasites and Vectors, 2016, 9, 517.	1.0	44
86	A comparative test of ixodid tick identification by a network of European researchers. Ticks and Tick-borne Diseases, 2017, 8, 540-546.	1.1	44
87	The way we view cellular (glyco)sphingolipids. Journal of Neurochemistry, 2007, 103, 3-13.	2.1	43
88	Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model. PLoS ONE, 2017, 12, e0181807.	1.1	43
89	Prevalence of pathogens in ticks collected from humans through citizen science in Belgium. Parasites and Vectors, 2019, 12, 550.	1.0	43
90	Host dispersal shapes the population structure of a tickâ€borne bacterial pathogen. Molecular Ecology, 2020, 29, 485-501.	2.0	43

#	Article	IF	CITATIONS
91	Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe. Pathogens, 2020, 9, 150.	1.2	43
92	The Lifetime of UDP-galactose:Ceramide Galactosyltransferase Is Controlled by a Distinct Endoplasmic Reticulum-associated Degradation (ERAD) Regulated by Sigma-1 Receptor Chaperones. Journal of Biological Chemistry, 2012, 287, 43156-43169.	1.6	42
93	Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus. Ticks and Tick-borne Diseases, 2014, 5, 810-817.	1.1	41
94	The Presence of <i>Borrelia miyamotoi</i> , A Relapsing Fever Spirochaete, in Questing <i>Ixodes ricinus</i> in Belgium and in The Netherlands. Zoonoses and Public Health, 2015, 62, 331-333.	0.9	41
95	Ticks climb the mountains: Ixodid tick infestation and infection by tick-borne pathogens in the Western Alps. Ticks and Tick-borne Diseases, 2020, 11, 101489.	1.1	41
96	Absence of zoonotic Bartonella species in questing ticks: First detection of Bartonella clarridgeiae and Rickettsia felis in cat fleas in the Netherlands. Parasites and Vectors, 2011, 4, 61.	1.0	40
97	Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasites and Vectors, 2015, 8, 441.	1.0	40
98	Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasites and Vectors, 2019, 12, 434.	1.0	39
99	Vector-Borne Disease Intelligence: Strategies to Deal with Disease Burden and Threats. Frontiers in Public Health, 2014, 2, 280.	1.3	38
100	Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks and Tick-borne Diseases, 2015, 6, 111-116.	1.1	38
101	Coâ€infections and transmission dynamics in a tickâ€borne bacterium community exposed to songbirds. Environmental Microbiology, 2016, 18, 988-996.	1.8	37
102	The scale affects our view on the identification and distribution of microbial communities in ticks. Parasites and Vectors, 2020, 13, 36.	1.0	36
103	First detection of spotted fever group rickettsiae inlxodes ricinusandDermacentor reticulatusticks in the UK. Epidemiology and Infection, 2011, 139, 524-529.	1.0	35
104	Ecological factors that determine Ixodes ricinus tick burdens in the great tit (Parus major), an avian reservoir of Borrelia burgdorferi s.l International Journal for Parasitology, 2013, 43, 603-611.	1.3	34
105	Serological and molecular evidence for spotted fever group Rickettsia and Borrelia burgdorferi sensu lato co-infections in The Netherlands. Ticks and Tick-borne Diseases, 2016, 7, 371-377.	1.1	34
106	Host Phylogeny, Geographic Overlap, and Roost Sharing Shape Parasite Communities in European Bats. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	34
107	Aberrant Receptor-Mediated Endocytosis of Schistosoma mansoni Glycoproteins on Host Lipoproteins. PLoS Medicine, 2006, 3, e253.	3.9	33
108	Selective and diagnostic labelling of serine hydrolases with reactive phosphonate inhibitors. Organic and Biomolecular Chemistry, 2008, 6, 523-531.	1.5	33

#	Article	IF	CITATIONS
109	Borrelia miyamotoi and Co-Infection with Borrelia afzelii in Ixodes ricinus Ticks and Rodents from Slovakia. Microbial Ecology, 2017, 73, 1000-1008.	1.4	33
110	Detection of pathogens in Dermacentor reticulatus in northwestern Europe: evaluation of a high-throughput array. Heliyon, 2019, 5, e01270.	1.4	33
111	Glycolipidâ€Dependent Sorting of Melanosomal from Lysosomal Membrane Proteins by Lumenal Determinants. Traffic, 2008, 9, 951-963.	1.3	32
112	Human Exposure to Tickborne Relapsing Fever SpirocheteBorreliamiyamotoi, the Netherlands. Emerging Infectious Diseases, 2014, 20, 1244-5.	2.0	31
113	Ability to cause erythema migrans differs between Borrelia burgdorferi sensu lato isolates. Parasites and Vectors, 2013, 6, 23.	1.0	30
114	Are the specialized bird ticks, <scp><i>I</i></scp> <i>xodes arboricola</i> and <i>I. frontalis</i> , competent vectors for <scp><i>B</i></scp> <i>orrelia burgdorferi</i> sensu lato?. Environmental Microbiology, 2014, 16, 1081-1089.	1.8	30
115	Diversifying forest communities may change Lyme disease risk: extra dimension to the dilution effect in Europe. Parasitology, 2016, 143, 1310-1319.	0.7	28
116	Prevalence of tick-borne viruses in <i>lxodes ricinus</i> assessed by high-throughput real-time PCR. Pathogens and Disease, 2018, 76, .	0.8	28
117	Roadâ€killed mammals provide insight into tickâ€borne bacterial pathogen communities within urban habitats. Transboundary and Emerging Diseases, 2019, 66, 277-286.	1.3	28
118	Transstadial Transmission of Borrelia turcica in Hyalomma aegyptium Ticks. PLoS ONE, 2015, 10, e0115520.	1.1	28
119	Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Scientific Reports, 2019, 9, 5088.	1.6	27
120	Hyperacidification of <i>Trans</i> â€Golgi Network and Endo/Lysosomes in Melanocytes by Glucosylceramideâ€Dependent Vâ€ATPase Activity. Traffic, 2011, 12, 1634-1647.	1.3	25
121	New foci of Haemaphysalis punctata and Dermacentor reticulatus in the Netherlands. Ticks and Tick-borne Diseases, 2016, 7, 367-370.	1.1	25
122	Prevalence and diversity of human pathogenic rickettsiae in urban versus rural habitats, Hungary. Experimental and Applied Acarology, 2016, 68, 223-226.	0.7	25
123	Bridging of cryptic <i>Borrelia</i> cycles in European songbirds. Environmental Microbiology, 2017, 19, 1857-1867.	1.8	25
124	<i>Borrelia miyamotoi</i> Disease in an Immunocompetent Patient, Western Europe. Emerging Infectious Diseases, 2018, 24, 1770-1772.	2.0	25
125	Hedgehogs, Squirrels, and Blackbirds as Sentinel Hosts for Active Surveillance of Borrelia miyamotoi and Borrelia burgdorferi Complex in Urban and Rural Environments. Microorganisms, 2020, 8, 1908.	1.6	24
126	Molecular analysis of Baylisascaris columnaris revealed mitochondrial and nuclear polymorphisms. Parasites and Vectors, 2013, 6, 124.	1.0	23

#	Article	IF	CITATIONS
127	Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiology of Disease, 2019, 127, 242-252.	2.1	23
128	Acarological Risk of <i>Borrelia burgdorferi</i> Sensu Lato Infections Across Space and Time in The Netherlands. Vector-Borne and Zoonotic Diseases, 2017, 17, 99-107.	0.6	22
129	Population-based analyses of Giardia duodenalis is consistent with the clonal assemblage structure. Parasites and Vectors, 2012, 5, 168.	1.0	21
130	Probability of Spirochete <i>Borrelia miyamotoi</i> Transmission from Ticks to Humans. Emerging Infectious Diseases, 2015, 21, 2273-2274.	2.0	21
131	Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasites and Vectors, 2018, 11, 600.	1.0	21
132	Prevalence and determinants of persistent symptoms after treatment for Lyme borreliosis: study protocol for an observational, prospective cohort study (LymeProspect). BMC Infectious Diseases, 2019, 19, 324.	1.3	20
133	Circulation of Babesia Species and Their Exposure to Humans through Ixodes ricinus. Pathogens, 2021, 10, 386.	1.2	20
134	Molecular Diagnostics of <i>Rickettsia africae</i> Infection in Travelers Returning from South Africa to The Netherlands. Vector-Borne and Zoonotic Diseases, 2011, 11, 1541-1547.	0.6	19
135	Enzootic origins for clinical manifestations of Lyme borreliosis. Infection, Genetics and Evolution, 2017, 49, 48-54.	1.0	19
136	First detection of Borrelia miyamotoi in Ixodes ricinus ticks from northern Italy. Parasites and Vectors, 2018, 11, 130.	1.0	19
137	Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens. Parasites and Vectors, 2021, 14, 360.	1.0	19
138	Hitch-hiking Between Cells on Lipoprotein Particles. Traffic, 2007, 8, 331-338.	1.3	18
139	Predicting Tick Presence by Environmental Risk Mapping. Frontiers in Public Health, 2014, 2, 238.	1.3	18
140	Climate Change and Public Health Policy: Translating the Science. International Journal of Environmental Research and Public Health, 2014, 11, 13-29.	1.2	18
141	Evaluation of Borrelia real time PCR DNA targeting OspA, FlaB and 5S–23S IGS and Borrelia 16S rRNA RT-qPCR. Journal of Microbiological Methods, 2014, 107, 41-46.	0.7	18
142	<i>Borrelia miyamotoi</i> and <i>Candidatus</i> Neoehrlichia mikurensis in <i>Ixodes ricinus</i> Ticks, Romania. Emerging Infectious Diseases, 2016, 22, 550-551.	2.0	18
143	Molecular characterization of human Cryptosporidium spp. isolates after an unusual increase in late summer 2012. Parasites and Vectors, 2016, 9, 138.	1.0	18
144	Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Scientific Reports, 2017, 7, 39596.	1.6	18

#	Article	IF	CITATIONS
145	Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe. Antonie Van Leeuwenhoek, 2018, 111, 1707-1717.	0.7	18
146	Detection of Anaplasma phagocytophilum, Candidatus Neoehrlichia sp., Coxiella burnetii and Rickettsia spp. in questing ticks from a recreational park, Portugal. Ticks and Tick-borne Diseases, 2018, 9, 1555-1564.	1.1	18
147	Lack of evidence for the presence of leprosy bacilli in red squirrels from Northâ€West Europe. Transboundary and Emerging Diseases, 2020, 67, 1032-1034.	1.3	18
148	Imported Hyalomma ticks in the Netherlands 2018–2020. Parasites and Vectors, 2021, 14, 244.	1.0	18
149	A real-time assemblage-specific PCR assay for the detection of Giardia duodenalis assemblages A, B and E in fecal samples. Veterinary Parasitology, 2015, 211, 28-34.	0.7	17
150	The genetic diversity of Borrelia afzelii is not maintained by the diversity of the rodent hosts. Parasites and Vectors, 2018, 11, 454.	1.0	17
151	Borrelia miyamotoi infection leads to cross-reactive antibodies to the C6 peptide in mice and men. Clinical Microbiology and Infection, 2020, 26, 513.e1-513.e6.	2.8	17
152	A single dose of doxycycline after an ixodes ricinus tick bite to prevent Lyme borreliosis: An open-label randomized controlled trial. Journal of Infection, 2021, 82, 98-104.	1.7	17
153	The Role of Peridomestic Animals in the Eco-Epidemiology of Anaplasma phagocytophilum. Microbial Ecology, 2021, 82, 602-612.	1.4	17
154	Pitfalls in Tick and Tick-Borne Pathogens Research, Some Recommendations and a Call for Data Sharing. Pathogens, 2021, 10, 712.	1.2	17
155	Epidemiology of Giardiasis in Humans. , 2011, , 17-28.		17
156	Detection of Dermacentor marginatus and a possible Rickettsia slovaca case in the United Kingdom – The risk of the visiting traveller. Travel Medicine and Infectious Disease, 2015, 13, 200-201.	1.5	16
157	Genetic evidence of interspecies introgression of mitochondrial genomes between Trichinella spiralis and Trichinella britovi under natural conditions. Infection, Genetics and Evolution, 2015, 36, 323-332.	1.0	16
158	Assessment of Borrelia miyamotoi in febrile patients and ticks in Alsace, an endemic area for Lyme borreliosis in France. Parasites and Vectors, 2020, 13, 199.	1.0	16
159	Tick-Borne Encephalitis Virus Antibodies in Roe Deer, the Netherlands. Emerging Infectious Diseases, 0, 25, 342-345.	2.0	16
160	Glycolipid transfer protein: Clear structure and activity, but enigmatic function. Advances in Enzyme Regulation, 2008, 48, 137-151.	2.9	15
161	Evaluation of a serological test for the diagnosis of Borrelia miyamotoi disease in Europe. Journal of Microbiological Methods, 2017, 136, 11-16.	0.7	15
162	Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks and Tick-borne Diseases, 2018, 9, 1143-1152.	1.1	15

#	Article	IF	CITATIONS
163	Molecular detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi and Anaplasma phagocytophilum in Eurasian red squirrels (Sciurus vulgaris). European Journal of Wildlife Research, 2017, 63, 1.	0.7	14
164	Year-to-year variation in the density of Ixodes ricinus ticks and the prevalence of the rodent-associated human pathogens Borrelia afzelii and B. miyamotoi in different forest types. Ticks and Tick-borne Diseases, 2018, 9, 141-145.	1.1	14
165	Draft Whole-Genome Sequences of Two Western European Borrelia miyamotoi Isolates. Microbiology Resource Announcements, 2019, 8, .	0.3	14
166	Presence of Roe Deer Affects the Occurrence of Anaplasma phagocytophilum Ecotypes in Questing Ixodes ricinus in Different Habitat Types of Central Europe. International Journal of Environmental Research and Public Health, 2019, 16, 4725.	1.2	14
167	Tripartite Interactions among Ixodiphagus hookeri, Ixodes ricinus and Deer: Differential Interference with Transmission Cycles of Tick-Borne Pathogens. Pathogens, 2020, 9, 339.	1.2	14
168	Screening of wild deer populations for exposure to SARS oVâ€2 in the United Kingdom, 2020–2021. Transboundary and Emerging Diseases, 2022, 69, .	1.3	14
169	Diagnosis of human granulocytic anaplasmosis in Belgium by combining molecular and serological methods. New Microbes and New Infections, 2014, 2, 177-178.	0.8	13
170	Behavioural responses of <i>Ixodes ricinus</i> nymphs to carbon dioxide and rodent odour. Medical and Veterinary Entomology, 2017, 31, 220-223.	0.7	13
171	Spotted fever rickettsiae in wild-living rodents from south-western Poland. Parasites and Vectors, 2017, 10, 413.	1.0	13
172	Making Vector-Borne Disease Surveillance Work: New Opportunities From the SDG Perspectives. Frontiers in Veterinary Science, 2019, 6, 232.	0.9	13
173	Getting under the birds' skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. Microbial Ecology, 2020, 79, 756-769.	1.4	13
174	A <i>Borrelia afzelii</i> Infection Increases Larval Tick Burden on <i>Myodes glareolus</i> (Rodentia:) Tj ETQq0 0 (Entomology, 2017, 54, tjw157.) rgBT /Ov 0.9	erlock 10 Tf 5 12
175	Exotic Rickettsiae in Ixodes ricinus: fact or artifact?. Parasites and Vectors, 2010, 3, 54.	1.0	11
176	Occurrence of tick-borne pathogens in questing Ixodes ricinus ticks from Wester Ross, Northwest Scotland. Parasites and Vectors, 2021, 14, 430.	1.0	11
177	Transport of (Glyco)Sphingolipids in and Between Cellular Membranes; Multidrug Transporters and Lateral Domains. Bioscience Reports, 1999, 19, 327-333.	1.1	10
178	Temporal-Spatial Variation in Questing Tick Activity in the Netherlands: The Effect of Climatic and Habitat Factors. Vector-Borne and Zoonotic Diseases, 2019, 19, 494-505.	0.6	10
179	Prosthetic Valve Endocarditis with Bartonella washoensis in a Human European Patient and Its Detection in Red Squirrels (Sciurus vulgaris). Journal of Clinical Microbiology, 2019, 58, .	1.8	10
180	Prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus nymphs across twenty recreational areas in England and Wales. Ticks and Tick-borne Diseases, 2022, 13, 101965.	1.1	10

#	Article	IF	CITATIONS
181	A lifelong study of a pack Rhodesian ridgeback dogs reveals subclinical and clinical tick-borne Anaplasma phagocytophilum infections with possible reinfection or persistence. Parasites and Vectors, 2018, 11, 238.	1.0	9
182	Effects of cattle grazing on Ixodes ricinus-borne disease risk in forest areas of the Netherlands. Ticks and Tick-borne Diseases, 2020, 11, 101355.	1.1	9
183	Mitochondrial sequences of Rhipicephalus and Coxiella endosymbiont reveal evidence of lineages co-cladogenesis. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
184	The Genetic Diversity of Rickettsiella Symbionts in Ixodes ricinus Throughout Europe. Microbial Ecology, 2022, 84, 613-626.	1.4	9
185	Virulence of recurrent infestations with Borrelia-infected ticks in a Borrelia-amplifying bird. Scientific Reports, 2015, 5, 16150.	1.6	8
186	Seasonal patterns and spatial variation of Borrelia burgdorferi (sensu lato) infections in Ixodes ricinus in the Netherlands. Parasites and Vectors, 2021, 14, 121.	1.0	8
187	Hedgehogs and Squirrels as Hosts of Zoonotic Bartonella Species. Pathogens, 2021, 10, 686.	1.2	8
188	Clinical outbreak of babesiosis caused by Babesia capreoli in captive reindeer (Rangifer tarandus) Tj ETQq0 0 0 rg	gBT_/Overl	ock 10 Tf 50
189	The HUMTICK study: protocol for a prospective cohort study on post-treatment Lyme disease syndrome and the disease and cost burden of Lyme borreliosis in Belgium. Archives of Public Health, 2017, 75, 42.	1.0	7
190	Red and fallow deer determine the density of Ixodes ricinus nymphs containing Anaplasma phagocytophilum. Parasites and Vectors, 2021, 14, 59.	1.0	7
191	4. Ecology of Borrelia burgdorferi sensu lato. Ecology and Control of Vector-Borne Diseases, 2016, , 41-61.	0.3	7
192	[8] Analysis of galactolipids and UDP-galactose: Ceramide galactosyltransferase. Methods in Enzymology, 2000, 311, 59-73.	0.4	6
193	Sensitivity of a point of care tick-test for the development of Lyme borreliosis. Parasites and Vectors,	1.0	6

	2013, 6, 338.		
194	Response to Galán-Puchades and Fuentes: Taenia asiatica: neglected – but not forgotten – and almost certainly being quietly globalised. Trends in Parasitology, 2014, 30, 56-57.	1.5	6
195	Serological testing for Lyme Borreliosis in general practice: A qualitative study among Dutch general practitioners. European Journal of General Practice, 2020, 26, 51-57.	0.9	6
196	VectorNet: Putting Vectors on the Map. Frontiers in Public Health, 2022, 10, 809763.	1.3	6
197	Cost-effectiveness of a potential anti-tick vaccine with combined protection against Lyme borreliosis and tick-borne encephalitis in Slovenia. Ticks and Tick-borne Diseases, 2019, 10, 63-71.	1.1	5

^{1989.} Emerging tick-borne pathogens: ticking on Pandora's box. Ecology and Control of Vector-Borne
Diseases, 2016, , 127-147.0.35

#	Article	IF	CITATIONS
199	No molecular detection of tick-borne pathogens in the blood of patients with erythema migrans in Belgium. Parasites and Vectors, 2022, 15, 27.	1.0	5
200	Parasite Load and Site-Specific Parasite Pressure as Determinants of Immune Indices in Two Sympatric Rodent Species. Animals, 2019, 9, 1015.	1.0	4
201	Commentary: Borrelia miyamotoi: 43 Cases Diagnosed in France by Real-Time PCR in Patients With Persistent Polymorphic Signs and Symptoms. Frontiers in Medicine, 2020, 7, 474.	1.2	4
202	Hypothesis: Cryptosporidium genetic diversity mirrors national disease notification rate. Parasites and Vectors, 2015, 8, 308.	1.0	3
203	Detection of <i>Anaplasma phagocytophilum</i> in European brown hares (<i>Lepus europaeus</i>) using three different methods. Zoonoses and Public Health, 2021, 68, 917-925.	0.9	3
204	Self-reported symptoms and health complaints associated with exposure to Ixodes ricinus-borne pathogens. Parasites and Vectors, 2022, 15, 93.	1.0	3
205	Prevalence and predictors of vector-borne pathogens in Dutch roe deer. Parasites and Vectors, 2022, 15, 76.	1.0	3
206	Assembly and Comparison of Ca. Neoehrlichia mikurensis Genomes. Microorganisms, 2022, 10, 1134.	1.6	3
207	23. Prevention of Lyme borreliosis after a tick bite. Ecology and Control of Vector-Borne Diseases, 2016, , 327-334.	0.3	2
208	22. Evidence-based health promotion programmes and tools to prevent tick bites and Lyme borreliosis. Ecology and Control of Vector-Borne Diseases, 2016, , 319-326.	0.3	2
209	Seasonal dynamics of tick burden and associated Borrelia burgdorferi s.l. and Borrelia miyamotoi infections in rodents in a Dutch forest ecosystem. Experimental and Applied Acarology, 2022, 87, 235-251.	0.7	2
210	Bartonella alsatica in Wild and Domestic Rabbits (Oryctolagus cuniculus) in The Netherlands. Microbiology Research, 2021, 12, 524-527.	0.8	1
211	How cells use simple glycosphingolipids to regulate their physiology. , 0, 2007, .		1
212	Response to Sequence data management for scientific purposes. Infection, Genetics and Evolution, 2017, 54, 509.	1.0	0
213	Lipid Translocation from the Cytosolic Leaflet of the Plasma Membrane to the Cell Surface by MultidrugTransporters. , 1998, , 301-308.		0
214	30. Concluding remarks. Ecology and Control of Vector-Borne Diseases, 2016, , 451-451.	0.3	0
215	1. Introduction: choosing a One Health approach for the control of Lyme borreliosis. Ecology and Control of Vector-Borne Diseases, 2016, , 11-18.	0.3	0
216	TBE in the Netherlands. Tick-borne Encephalitis - the Book, 2022, , .	0.0	0