List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2498949/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Kidney Organoids Are Capable of Forming Tumors, but Not Teratomas. Stem Cells, 2022, 40, 577-591.                                                                                                                                                       | 1.4 | 3         |
| 2  | How to Make Sense out of 75,000 Mesenchymal Stromal Cell Publications?. Cells, 2022, 11, 1419.                                                                                                                                                          | 1.8 | 5         |
| 3  | Cellular therapies in organ transplantation. Transplant International, 2021, 34, 233-244.                                                                                                                                                               | 0.8 | 11        |
| 4  | Human kidney organoids produce functional renin. Kidney International, 2021, 99, 134-147.                                                                                                                                                               | 2.6 | 36        |
| 5  | Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ<br>Transplantation. Frontiers in Immunology, 2021, 12, 607953.                                                                                                  | 2.2 | 2         |
| 6  | Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine<br>perfusion: A porcine renal autotransplantation study. American Journal of Transplantation, 2021, 21,<br>2348-2359.                                           | 2.6 | 26        |
| 7  | Membrane particles from mesenchymal stromal cells reduce the expression of fibrotic markers on pulmonary cells. PLoS ONE, 2021, 16, e0248415.                                                                                                           | 1.1 | 1         |
| 8  | Mesenchymal Stromal Cell Derived Membrane Particles Are Internalized by Macrophages and<br>Endothelial Cells Through Receptor-Mediated Endocytosis and Phagocytosis. Frontiers in<br>Immunology, 2021, 12, 651109.                                      | 2.2 | 9         |
| 9  | Membrane Particles Derived From Adipose Tissue Mesenchymal Stromal Cells Improve Endothelial Cell<br>Barrier Integrity. Frontiers in Immunology, 2021, 12, 650522.                                                                                      | 2.2 | 8         |
| 10 | Organ transplants of the future: planning for innovations including xenotransplantation. Transplant<br>International, 2021, 34, 2006-2018.                                                                                                              | 0.8 | 11        |
| 11 | Vitamin D metabolism in human kidney organoids. Nephrology Dialysis Transplantation, 2021, , .                                                                                                                                                          | 0.4 | 7         |
| 12 | Identification of predictive markers for the generation of well-differentiated human induced pluripotent stem cell-derived kidney organoids. Stem Cells and Development, 2021, 30, 1103-1114.                                                           | 1.1 | 2         |
| 13 | Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of<br>Endochondral Ossification in an Immunocompetent Xenogeneic Model. Frontiers in Immunology, 2021,<br>12, 715267.                                             | 2.2 | 1         |
| 14 | Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion<br>Injury—Effective Delivery Without Kidney Function Improvement Posttransplant. Transplantation,<br>2021, 105, 517-528.                              | 0.5 | 12        |
| 15 | Additional Normothermic Machine Perfusion Versus Hypothermic Machine Perfusion in Suboptimal<br>Donor Kidney Transplantation: Protocol of a Randomized, Controlled, Open-Label Trial. International<br>Journal of Surgery Protocols, 2021, 25, 227-237. | 0.5 | 8         |
| 16 | Proteomic Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicles and Reconstructed<br>Membrane Particles. International Journal of Molecular Sciences, 2021, 22, 12935.                                                                    | 1.8 | 5         |
| 17 | The Importance of Dosing, Timing, and (in)Activation of Adipose Tissue-Derived Mesenchymal Stromal<br>Cells on Their Immunomodulatory Effects. Stem Cells and Development, 2020, 29, 38-48.                                                             | 1.1 | 11        |
| 18 | First Report on Ex Vivo Delivery of Paracrine Active Human Mesenchymal Stromal Cells to Liver Grafts<br>During Machine Perfusion. Transplantation, 2020, 104, e5-e7.                                                                                    | 0.5 | 30        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Administration of Human MSC-Derived Extracellular Vesicles for the Treatment of Primary Sclerosing<br>Cholangitis: Preclinical Data in MDR2 Knockout Mice. International Journal of Molecular Sciences,<br>2020, 21, 8874.       | 1.8 | 15        |
| 20 | Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Research and Therapy, 2020, 11, 352.                                                                        | 2.4 | 16        |
| 21 | Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow- and Adipose Tissue-Derived<br>Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion. Stem Cells and<br>Development, 2020, 29, 1320-1330. | 1.1 | 27        |
| 22 | Editorial: Safety, Efficacy and Mechanisms of Action of Mesenchymal Stem Cell Therapies. Frontiers in<br>Immunology, 2020, 11, 243.                                                                                              | 2.2 | 71        |
| 23 | Differential effects of heat-inactivated, secretome-deficient MSC and metabolically active MSC in sepsis and allogenic heart transplantation. Stem Cells, 2020, 38, 797-807.                                                     | 1.4 | 23        |
| 24 | The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transplant International, 2020, 33, 833-840.                                                  | 0.8 | 15        |
| 25 | Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells<br>Translational Medicine, 2019, 8, 1126-1134.                                                                                      | 1.6 | 114       |
| 26 | Mesenchymal Stromal Cells Are Retained in the Porcine Renal Cortex Independently of Their Metabolic<br>State After Renal Intra-Arterial Infusion. Stem Cells and Development, 2019, 28, 1224-1235.                               | 1.1 | 22        |
| 27 | Infusing Mesenchymal Stromal Cells into Porcine Kidneys during Normothermic Machine Perfusion:<br>Intact MSCs Can Be Traced and Localised to Glomeruli. International Journal of Molecular Sciences,<br>2019, 20, 3607.          | 1.8 | 48        |
| 28 | Effects of Normothermic Machine Perfusion Conditions on Mesenchymal Stromal Cells. Frontiers in<br>Immunology, 2019, 10, 765.                                                                                                    | 2.2 | 32        |
| 29 | Nanoparticle Release by Extended Criteria Donor Kidneys During Normothermic Machine Perfusion.<br>Transplantation, 2019, 103, e110-e111.                                                                                         | 0.5 | 14        |
| 30 | The Effects of an IL-21 Receptor Antagonist on the Alloimmune Response in a Humanized Mouse Skin<br>Transplant Model. Transplantation, 2019, 103, 2065-2074.                                                                     | 0.5 | 11        |
| 31 | Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through<br>Phagocytosis of MSC By Monocytic Cells. Stem Cells, 2018, 36, 602-615.                                                                   | 1.4 | 384       |
| 32 | Epigenetic changes in umbilical cord mesenchymal stromal cells upon stimulation and culture expansion. Cytotherapy, 2018, 20, 919-929.                                                                                           | 0.3 | 19        |
| 33 | Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not<br>Influence Migration to Osteoarthritic Cartilage and Synovium. American Journal of Sports Medicine,<br>2017, 45, 1151-1161.        | 1.9 | 16        |
| 34 | Aging of bone marrow– and umbilical cord–derived mesenchymal stromal cells during expansion.<br>Cytotherapy, 2017, 19, 798-807.                                                                                                  | 0.3 | 65        |
| 35 | Immunomodulation by Mesenchymal Stem Cells. Transplantation, 2017, 101, 30-31.                                                                                                                                                   | 0.5 | 6         |
| 36 | Mesenchymal Stromal Cells as Anti-Inflammatory and Regenerative Mediators for Donor Kidneys<br>During Normothermic Machine Perfusion. Stem Cells and Development, 2017, 26, 1162-1170.                                           | 1.1 | 39        |

| #  | Article                                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes. Scientific Reports, 2017, 7, 12100.                                                                                                                                                        | 1.6 | 74        |
| 38 | Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease. Stem Cell Research and Therapy, 2017, 8, 140.                                                                                                                                                    | 2.4 | 84        |
| 39 | Inflammatory Conditions Dictate the Effect of Mesenchymal Stem or Stromal Cells on B Cell<br>Function. Frontiers in Immunology, 2017, 8, 1042.                                                                                                                                                                                         | 2.2 | 106       |
| 40 | Adipose Tissue-Derived Mesenchymal Stem Cells Have a Heterogenic Cytokine Secretion Profile. Stem<br>Cells International, 2017, 2017, 1-7.                                                                                                                                                                                             | 1.2 | 36        |
| 41 | The Biological Effects of IL-21 Signaling on B-Cell-Mediated Responses in Organ Transplantation.<br>Frontiers in Immunology, 2016, 7, 319.                                                                                                                                                                                             | 2.2 | 29        |
| 42 | Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity. Stem Cells and Development, 2016, 25, 1342-1354.                                                                                                                                                                                                                | 1.1 | 110       |
| 43 | Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full<br>Clinical Potential of MSC Therapy?. Advances in Experimental Medicine and Biology, 2016, 951, 77-98.                                                                                                                            | 0.8 | 141       |
| 44 | Allogeneic chondrogenically differentiated human mesenchymal stromal cells do not induce<br>immunogenic responses from T lymphocytes in vitro. Cytotherapy, 2016, 18, 957-969.                                                                                                                                                         | 0.3 | 16        |
| 45 | Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells, 2016, 34, 483-492.                                                                                                                                                                   | 1.4 | 209       |
| 46 | Effects of Freeze–Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression.<br>Stem Cells and Development, 2016, 25, 586-597.                                                                                                                                                                                      | 1.1 | 60        |
| 47 | Women have more potential to induce browning of perirenal adipose tissue than men. Obesity, 2015, 23, 1671-1679.                                                                                                                                                                                                                       | 1.5 | 49        |
| 48 | Indoleamine 2,3-Dioxygenase Does It. Transplantation, 2015, 99, 1751-1752.                                                                                                                                                                                                                                                             | 0.5 | 2         |
| 49 | T Lymphocyte Prestimulation Impairs in a Time-Dependent Manner the Capacity of Adipose Mesenchymal<br>Stem Cells to Inhibit Proliferation: Role of Interferon Î <sup>3</sup> , Poly I:C, and Tryptophan Metabolism in<br>Restoring Adipose Mesenchymal Stem Cell Inhibitory Effect. Stem Cells and Development, 2015, 24,<br>2158-2170 | 1.1 | 22        |
| 50 | Efficacy of immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Review of Clinical Immunology, 2015, 11, 617-636.                                                                                                                                                                                            | 1.3 | 25        |
| 51 | Are mesenchymal stromal cells immune cells?. Arthritis Research and Therapy, 2015, 17, 88.                                                                                                                                                                                                                                             | 1.6 | 54        |
| 52 | Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral<br>Ossification of Adult Human MSCs via WNT Signaling Modulation. Stem Cell Reports, 2015, 4, 459-472.                                                                                                                                           | 2.3 | 122       |
| 53 | Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports, 2015, 4, 1004-1015.                                                                                                                                                         | 2.3 | 111       |
| 54 | Toward Development of iMesenchymal Stem Cells for Immunomodulatory Therapy. Frontiers in<br>Immunology, 2015, 6, 648.                                                                                                                                                                                                                  | 2.2 | 82        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | NK Cells and MSCs: Possible Implications for MSC Therapy in Renal Transplantation. Journal of Stem<br>Cell Research & Therapy, 2014, 04, 1000166.                                                                         | 0.3 | 36        |
| 56 | Update on Controls for Isolation and Quantification Methodology of Extracellular Vesicles Derived from Adipose Tissue Mesenchymal Stem Cells. Frontiers in Immunology, 2014, 5, 525.                                      | 2.2 | 69        |
| 57 | The Life and Fate of Mesenchymal Stem Cells. Frontiers in Immunology, 2014, 5, 148.                                                                                                                                       | 2.2 | 358       |
| 58 | Mesenchymal stromal cells for organ transplantation. Current Opinion in Organ Transplantation, 2014, 19, 41-46.                                                                                                           | 0.8 | 66        |
| 59 | No Evidence for Circulating Mesenchymal Stem Cells in Patients with Organ Injury. Stem Cells and Development, 2014, 23, 2328-2335.                                                                                        | 1.1 | 61        |
| 60 | Mesenchymal Stem Cells Induce an Inflammatory Response After Intravenous Infusion. Stem Cells and Development, 2013, 22, 2825-2835.                                                                                       | 1.1 | 114       |
| 61 | Mesenchymal stem cells control alloreactive CD8+CD28â^T cells. Clinical and Experimental<br>Immunology, 2013, 174, 449-458.                                                                                               | 1.1 | 41        |
| 62 | Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy, 2013, 15, 1352-1361.                                                                               | 0.3 | 40        |
| 63 | Bone marrow-derived mesenchymal stromal cells from patients with end-stage renal disease are suitable for autologous therapy. Cytotherapy, 2013, 15, 663-672.                                                             | 0.3 | 43        |
| 64 | Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells, 2013, 31, 1980-1991.                                   | 1.4 | 352       |
| 65 | Adipose Mesenchymal Stromal Cell Function Is Not Affected by Methotrexate and Azathioprine.<br>BioResearch Open Access, 2013, 2, 431-439.                                                                                 | 2.6 | 10        |
| 66 | Effects of Hypoxia on the Immunomodulatory Properties of Adipose Tissue-Derived Mesenchymal Stem cells. Frontiers in Immunology, 2013, 4, 203.                                                                            | 2.2 | 110       |
| 67 | The effect of rabbit antithymocyte globulin on human mesenchymal stem cells. Transplant<br>International, 2013, 26, 651-658.                                                                                              | 0.8 | 6         |
| 68 | Heart Grafts Tolerized Through Third-Party Multipotent Adult Progenitor Cells Can Be<br>Retransplanted to Secondary Hosts With No Immunosuppression. Stem Cells Translational Medicine,<br>2013, 2, 595-606.              | 1.6 | 50        |
| 69 | Morphology and size of stem cells from mouse and whale: observational study. BMJ, The, 2013, 347, f6833-f6833.                                                                                                            | 3.0 | 12        |
| 70 | Interaction between Adipose Tissue-Derived Mesenchymal Stem Cells and Regulatory T-Cells. Cell Transplantation, 2013, 22, 41-54.                                                                                          | 1.2 | 58        |
| 71 | Human Bone Marrow- and Adipose Tissue-derived Mesenchymal Stromal Cells are Immunosuppressive<br>In vitro and in a Humanized Allograft Rejection Model. Journal of Stem Cell Research & Therapy, 2013,<br>Suppl 6, 20780. | 0.3 | 42        |
| 72 | Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+<br>Cytotoxic T Cell Reactivity. Journal of Stem Cell Research & Therapy, 2013, 3, 004.                                      | 0.3 | 19        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Frontiers in Immunology, 2012, 3, 126.                                                          | 2.2 | 67        |
| 74 | Mesenchymal stem cells. Current Opinion in Organ Transplantation, 2012, 17, 55-62.                                                                                                                                 | 0.8 | 47        |
| 75 | The impact of mesenchymal stem cell therapy in transplant rejection and tolerance. Current Opinion in Organ Transplantation, 2012, 17, 355-361.                                                                    | 0.8 | 31        |
| 76 | Effect of Arthritic Synovial Fluids on the Expression of Immunomodulatory Factors by Mesenchymal Stem Cells: An Explorative in vitro Study. Frontiers in Immunology, 2012, 3, 231.                                 | 2.2 | 44        |
| 77 | Mesenchymal stem cells derived from adipose tissue are not affected by renal disease. Kidney<br>International, 2012, 82, 748-758.                                                                                  | 2.6 | 54        |
| 78 | Mesenchymal stem cell-educated macrophages. Transplantation Research, 2012, 1, 12.                                                                                                                                 | 1.5 | 144       |
| 79 | Immunological Aspects of Allogeneic and Autologous Mesenchymal Stem Cell Therapies. Human Gene<br>Therapy, 2011, 22, 1587-1591.                                                                                    | 1.4 | 54        |
| 80 | Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transplant Immunology, 2011, 25, 141-147.                                                | 0.6 | 86        |
| 81 | Mesenchymal stem cells in transplantation and tissue regeneration. Frontiers in Immunology, 2011, 2, 84.                                                                                                           | 2.2 | 9         |
| 82 | Human Mesenchymal Stem Cells Are Susceptible to Lysis by CD8 <sup>+</sup> T Cells and NK Cells. Cell<br>Transplantation, 2011, 20, 1547-1559.                                                                      | 1.2 | 101       |
| 83 | Safety and feasibility of third-party multipotent adult progenitor cells for immunomodulation<br>therapy after liver transplantationa phase I study (MISOT-I). Journal of Translational Medicine, 2011, 9,<br>124. | 1.8 | 51        |
| 84 | Advancement of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation (MISOT).<br>Transplantation, 2010, 90, 124-126.                                                                                        | 0.5 | 66        |
| 85 | Human Adipose Tissue-Derived Mesenchymal Stem Cells Induce Explosive T-Cell Proliferation. Stem<br>Cells and Development, 2010, 19, 1843-1853.                                                                     | 1.1 | 89        |
| 86 | The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy.<br>International Immunopharmacology, 2010, 10, 1496-1500.                                                               | 1.7 | 212       |
| 87 | Donor-Derived Mesenchymal Stem Cells Remain Present and Functional in the Transplanted Human<br>Heart. American Journal of Transplantation, 2009, 9, 222-230.                                                      | 2.6 | 37        |
| 88 | Cell contact interaction between adiposeâ€derived stromal cells and alloâ€activated T lymphocytes.<br>European Journal of Immunology, 2009, 39, 3436-3446.                                                         | 1.6 | 50        |
| 89 | Potential of mesenchymal stem cells as immune therapy in solid-organ transplantation. Transplant<br>International, 2009, 22, 365-376.                                                                              | 0.8 | 77        |
| 90 | Functional Nicotinic and Muscarinic Receptors on Mesenchymal Stem Cells. Stem Cells and Development, 2009, 18, 103-112.                                                                                            | 1.1 | 67        |

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The Authors' Reply: Mesenchymal Stem Cells and Immunosuppressive Drug Interactions.<br>Transplantation, 2009, 87, 1900-1901.                            | 0.5 | Ο         |
| 92 | Toward MSC in Solid Organ Transplantation: 2008 Position Paper of the MISOT Study Group.<br>Transplantation, 2009, 88, 614-619.                         | 0.5 | 64        |
| 93 | Susceptibility of Human Mesenchymal Stem Cells to Tacrolimus, Mycophenolic Acid, and Rapamycin.<br>Transplantation, 2008, 86, 1283-1291.                | 0.5 | 92        |
| 94 | Comparative Characterization of Hair Follicle Dermal Stem Cells and Bone Marrow Mesenchymal Stem<br>Cells. Stem Cells and Development, 2006, 15, 49-60. | 1.1 | 142       |
| 95 | The Effects of Anticholinergic Insecticides on Human Mesenchymal Stem Cells. Toxicological Sciences, 2006, 94, 342-350.                                 | 1.4 | 35        |