Jean Pierre Simonato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2498751/publications.pdf

Version: 2024-02-01

136950 98798 4,701 79 32 67 citations h-index g-index papers 86 86 86 6919 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology, 2013, 24, 452001.	2.6	613
2	Metallic Nanowireâ€Based Transparent Electrodes for Next Generation Flexible Devices: a Review. Small, 2016, 12, 6052-6075.	10.0	478
3	Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Progress in Materials Science, 2020, 108, 100616.	32.8	355
4	Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, 2012, 5, 427-433.	10.4	256
5	Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. Journal of Materials Chemistry C, 2014, 2, 1278-1283.	5 . 5	247
6	Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement. Chemistry of Materials, 2016, 28, 3462-3468.	6.7	201
7	Metallic behaviour of acid doped highly conductive polymers. Chemical Science, 2015, 6, 412-417.	7.4	175
8	Transparent Heaters: A Review. Advanced Functional Materials, 2020, 30, 1910225.	14.9	156
9	Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale, 2015, 7, 2107-2115.	5.6	155
10	Assessment of Acetylcholinesterase Activity Using Indoxylacetate and Comparison with the Standard Ellman's Method. International Journal of Molecular Sciences, 2011, 12, 2631-2640.	4.1	125
11	Work Function Tuning for Highâ€Performance Solutionâ€Processed Organic Photodetectors with Inverted Structure. Advanced Materials, 2013, 25, 6534-6538.	21.0	125
12	Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Research, 2014, 7, 315-324.	10.4	118
13	All-Polymeric Flexible Transparent Heaters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27250-27256.	8.0	108
14	Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology, 2013, 24, 215501.	2.6	96
15	Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins. Journal of Applied Crystallography, 2009, 42, 242-252.	4.5	88
16	Electrical Mapping of Silver Nanowire Networks: A Versatile Tool for Imaging Network Homogeneity and Degradation Dynamics during Failure. ACS Nano, 2018, 12, 4648-4659.	14.6	78
17	Synthesis of Continuous Conductive PEDOT:PSS Nanofibers by Electrospinning: A Conformal Coating for Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 950-957.	8.0	68
18	Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: application to transparent film heaters. Nanotechnology, 2018, 29, 085701.	2.6	68

#	Article	IF	CITATIONS
19	An Integrated Approach to the Mid-Spin State ($S = 3/2$) in Six-Coordinate Iron(III) Chiroporphyrins. Inorganic Chemistry, 2000, 39, 3978-3987.	4.0	57
20	Antagonistic metal-directed inductions in catalytic asymmetric aziridination by manganese and iron tetramethylchiroporphyrins. Chemical Communications, 1999, , 989-990.	4.1	54
21	Iridium–formic acid based system for hydroxycarbonylation without CO gas. Journal of Molecular Catalysis A, 2001, 171, 91-94.	4.8	53
22	[Ag6(PMo10V2O40)](CH3COO)·8H2O: A 3D Macrocationic Polyoxometallic Keggin Complex. Inorganic Chemistry, 2004, 43, 2240-2242.	4.0	48
23	Electrochemical signature of the grafting of diazonium salts: A probing parameter for monitoring the electro-addressed functionalization of devices. Electrochimica Acta, 2009, 54, 3078-3085.	5.2	47
24	Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. Journal of Nanoparticle Research, 2008, 10, 1287-1291.	1.9	44
25	Direct Imaging of the Onset of Electrical Conduction in Silver Nanowire Networks by Infrared Thermography: Evidence of Geometrical Quantized Percolation. Nano Letters, 2016, 16, 7046-7053.	9.1	44
26	Self-assembled monolayers for electrode fabrication and efficient threshold voltage control of organic transistors with amorphous semiconductor layer. Organic Electronics, 2009, 10, 119-126.	2.6	40
27	New efficient catalytic system for hydroxycarbonylation without CO gas. Journal of Molecular Catalysis A, 2003, 197, 61-64.	4.8	39
28	Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chemistry, 2006, 8, 556.	9.0	38
29	Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption. Applied Physics Letters, 2014, 105, .	3.3	38
30	Conductive-probe atomic force microscopy characterization of silicon nanowire. Nanoscale Research Letters, 2011, 6, 110.	5.7	37
31	Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon, 2012, 50, 3459-3464.	10.3	37
32	Subâ€ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2010, 49, 4063-4066.	13.8	32
33	Chromogenic detection of Sarin by discolouring decomplexation of a metal coordination complex. Chemical Communications, 2013, 49, 8946.	4.1	32
34	A toxicology-informed, safer by design approach for the fabrication of transparent electrodes based on silver nanowires. Environmental Science: Nano, 2019, 6, 684-694.	4.3	31
35	Kinetic and Structural Factors Governing Chiral Recognition in Cobalt(III) Chiroporphyrinâ°'Amino Alcohol Complexes. Journal of the American Chemical Society, 1998, 120, 7363-7364.	13.7	30
36	Innovative water management in micro air-breathing polymer electrolyte membrane fuel cells. Journal of Power Sources, 2010, 195, 1156-1162.	7.8	27

#	Article	IF	Citations
37	Crumpling of silver nanowires by endolysosomes strongly reduces toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14893-14898.	7.1	26
38	Evaluation of cobalt(III) tetramethylchiroporphyrin as an analytical reagent for the determination of enantiomer composition of primary amines and aziridines by 1H NMR spectroscopy. New Journal of Chemistry, 2001, 25, 714-720.	2.8	25
39	Controlled in Situ n-Doping of Silicon Nanowires during VLS Growth and Their Characterization by Scanning Spreading Resistance Microscopy. Journal of Physical Chemistry C, 2010, 114, 760-765.	3.1	24
40	Transparent and Mechanically Resistant Silver-Nanowire-Based Low-Emissivity Coatings. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21971-21978.	8.0	24
41	Improvement of water management in polymer electrolyte membrane fuel cell thanks to cathode cracks. Journal of Power Sources, 2010, 195, 5228-5234.	7.8	23
42	High Gain and Fast Detection of Warfare Agents Using Back-Gated Silicon-Nanowired MOSFETs. IEEE Electron Device Letters, 2011, 32, 976-978.	3.9	21
43	Insight into the Degradation Mechanisms of Highly Conductive Poly(3,4-ethylenedioxythiophene) Thin Films. ACS Applied Polymer Materials, 2020, 2, 2686-2695.	4.4	21
44	Spray-coated PEDOT:OTf films: thermoelectric properties and integration into a printed thermoelectric generator. Materials Chemistry Frontiers, 2020, 4, 2054-2063.	5.9	19
45	Rhodium(I)-catalyzed addition of phenols to dienes. A new convergent synthesis of vitamin E. Tetrahedron Letters, 2000, 41, 3339-3343.	1.4	18
46	Chemical functionalization of electrodes for detection of gaseous nerve agents with carbon nanotube field-effect transistors. Chemical Communications, 2011, 47, 6048.	4.1	18
47	Growth of one-dimensional Si/SiGe heterostructures by thermal CVD. Nanotechnology, 2008, 19, 335603.	2.6	17
48	The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups. Nanotechnology, 2009, 20, 145705.	2.6	15
49	Chemical Functionalization of Silicon Nanowires by an Electroactive Group: A Direct Spectroscopic Characterization of the Hybrid Nanomaterial. Journal of Physical Chemistry C, 2010, 114, 3924-3931.	3.1	15
50	Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta, 2011, 85, 2542-2545.	5 . 5	14
51	D2-Symmetric Chiroporphyrins Derived from (1R)-cis-Hemicaronaldehydic Acid: Preparation and Spectral Characterization. European Journal of Organic Chemistry, 2000, 2000, 583-589.	2.4	13
52	High-temperature stability of copper nanoparticles through $Cu@Ag$ nanostructures. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	12
53	Carbon Substrate Functionalization with Diazonium Salts Toward Sensor Applications. Molecular Crystals and Liquid Crystals, 2008, 486, 271/[1313]-281/[1323].	0.9	11
54	A highly selective non-radical diazo coupling provides low cost semi-conducting carbon nanotubes. Carbon, 2014, 66, 246-258.	10.3	11

#	Article	IF	CITATIONS
55	Water content control during solution-based polymerization: a key to reach extremely high conductivity in PEDOT thin films. Journal of Materials Chemistry C, 2020, 8, 17254-17260.	5. 5	11
56	Boron Nitride Nanotubes for Heat Dissipation in Polycaprolactone Composites. ACS Applied Nano Materials, 2021, 4, 4774-4780.	5.0	11
57	Iodorhodium(III) tetramethylchiroporphyrin: potential reagent for chiral selection and analysis of amino compounds. Inorganica Chimica Acta, 2001, 315, 240-244.	2.4	10
58	Synthesis, characterization, and thermoelectric properties of superconducting (BEDT-TTF) < sub > 2 < / sub > 1 < sub > 3 < / sub > nanoparticles. Journal of Materials Chemistry C, 2016, 4, 7449-7454.	5. 5	10
59	Electrical and Mechanical Properties of Intrinsically Flexible and Stretchable PEDOT Polymers for Thermotherapy. ACS Applied Polymer Materials, 2021, 3, 5942-5949.	4.4	10
60	Highly end-doped silicon nanowires for field-effect transistors on flexible substrates. Nanoscale, 2010, 2, 677.	5.6	9
61	Assessment of ultrathin yttria-stabilized zirconia foils for biomedical applications. Journal of Materials Science, 2015, 50, 6197-6207.	3.7	9
62	Synthesis of 4-Tert-octylphenol and 4-Cumylphenol by Metal Triflate and Metal Triflimidate Catalysts. Journal of Chemical Research, 2006, 2006, 521-522.	1.3	7
63	Effects of p-doping on the thermal sensitivity of individual Si nanowires. Applied Physics Letters, 2008, 93, 193105.	3.3	6
64	Multiple Hydrogen-Bond-Assisted Self-Assembly of Semiconductor Nanocrystals on Silicon Surfaces and Nanowires. Journal of Physical Chemistry C, 2009, 113, 21389-21395.	3.1	6
65	Structure–Property Relationship of Cryogel-Based Fe–N–C Catalysts for the Oxygen Reduction Reaction. Energy & Description Reaction Reaction Reaction. Energy & Description Reaction Reaction Reaction. Energy & Description Reaction Re	5.1	6
66	High performance encapsulation of transparent conductive polymers by spatial atomic layer deposition. Synthetic Metals, 2022, 284, 116995.	3.9	6
67	Bis-aqua-cobalt(III)-tetramethylchiroporphyrin perchlorate: a selective water metalloreceptor. Inorganica Chimica Acta, 2000, 304, 288-292.	2.4	5
68	Transparent Film Heaters based on Silver Nanowire Random Networks. Materials Research Society Symposia Proceedings, 2012, 1449, 107.	0.1	4
69	Long- to short-junction crossover and field-reentrant critical current in Al/Ag-nanowires/Al Josephson junctions. Physical Review B, 2020, 102, .	3.2	4
70	An electrochemical method to rapidly assess the environmental risk of silver release from nanowire transparent conductive films. NanoImpact, 2020, 18, 100217.	4.5	4
71	Functionalization of Silicon Nanowires for Specific Sensing. ECS Transactions, 2011, 35, 313-318.	0.5	3
72	Nanorobotic Strategies for Handling and Characterization of Metal-Assisted Etched Silicon Nanowires. IEEE/ASME Transactions on Mechatronics, 2013, 18, 887-894.	5.8	3

#	Article	IF	CITATIONS
73	Doping characteristics of iodine on as-grown chemical vapor deposited graphene on Pt. Ultramicroscopy, 2015, 159, 470-475.	1.9	3
74	High performance metallic joints from screen-printed Cu@Ag nanopastes. Materialia, 2020, 14, 100871.	2.7	3
75	Gramâ€scale carbon nanotubes as semiconducting material for highly versatile route of integration in plastic electronics. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 183-192.	1.8	2
76	CNTFET Gas Sensors Using SWCNT Mats: Method for Low-cost Fabrication, Solution to Improve Selectivity, Experimental Results using Interfering Agents. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	1
77	TCAD study of the detection mechanisms in silicon nanoribbon-based gas sensors. , $2011, \ldots$		1
78	New Chemically Functionalized Nanomaterials for Electrical Nerve Agents Sensors. Journal of Physics: Conference Series, 2011, 307, 012008.	0.4	1
79	[Ag6(PMo10V2O40)] (CH3COO)×8H2O: A 3D Macrocationic Polyoxometallic Keggin Complex ChemInform, 2004, 35, no.	0.0	0