Timothy J Albaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2498097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Belowâ€ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002, 154, 389-398.	3.5	248
2	Tree Nutrition and Forest Fertilization of Pine Plantations in the Southern United States. Southern Journal of Applied Forestry, 2007, 31, 5-11.	0.4	225
3	Long term growth responses of loblolly pine to optimal nutrient and water resource availability. Forest Ecology and Management, 2004, 192, 3-19.	1.4	203
4	Respiratory carbon use and carbon storage in midâ€rotation loblolly pine (<i>Pinus taeda</i> L.) plantations: the effect of site resources on the stand carbon balance. Global Change Biology, 2004, 10, 1335-1350.	4.2	93
5	CARRY-OVER EFFECTS OF WATER AND NUTRIENT SUPPLY ON WATER USE OFPINUS TAEDA. , 1999, 9, 513-525.		87
6	Historical Patterns of Forest Fertilization in the Southeastern United States from 1969 to 2004. Southern Journal of Applied Forestry, 2007, 31, 129-137.	0.4	67
7	Maximum response of loblolly pine plantations to silvicultural management in the southern United States. Forest Ecology and Management, 2016, 375, 105-111.	1.4	63
8	Fertilization and irrigation effects on tree level aboveground net primary production, light interception and light use efficiency in a loblolly pine plantation. Forest Ecology and Management, 2013, 288, 43-48.	1.4	61
9	Local and general above-stump biomass functions for loblolly pine and slash pine trees. Forest Ecology and Management, 2014, 334, 254-276.	1.4	55
10	Nutrient use and uptake in Pinus taeda. Tree Physiology, 2008, 28, 1083-1098.	1.4	42
11	Root and stem partitioning of Pinus taeda. Trees - Structure and Function, 2006, 20, 176-185.	0.9	38
12	Leveraging 35 years of <i>Pinus taeda</i> research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments. Biogeosciences, 2017, 14, 3525-3547.	1.3	36
13	Advances in Silviculture of Intensively Managed Plantations. Current Forestry Reports, 2018, 4, 23-34.	3.4	35
14	Individual tree crown and stand development in Pinus taeda under different fertilization and irrigation regimes. Forest Ecology and Management, 2006, 234, 10-23.	1.4	34
15	Vegetation control and fertilization in midrotation Pinus taeda stands in the southeastern United States. Annals of Forest Science, 2003, 60, 619-624.	0.8	32
16	Carbon Emissions and Sequestration from Fertilization of Pine in the Southeastern United States. Forest Science, 2012, 58, 419-429.	0.5	29
17	Comparative water use in short-rotation Eucalyptus benthamii and Pinus taeda trees in the Southern United States. Forest Ecology and Management, 2017, 397, 126-138.	1.4	29
18	Do biological expansion factors adequately estimate stand-scale aboveground component biomass for Norway spruce?. Forest Ecology and Management, 2009, 258, 2628-2637.	1.4	25

TIMOTHY J ALBAUGH

#	Article	IF	CITATIONS
19	Tamm Review: Light use efficiency and carbon storage in nutrient and water experiments on major forest plantation species. Forest Ecology and Management, 2016, 376, 333-342.	1.4	25
20	Post-thinning density and fertilization affect Pinus taeda stand and individual tree growth. Forest Ecology and Management, 2017, 396, 207-216.	1.4	25
21	Evaluating changes in switchgrass physiology, biomass, and light-use efficiency under artificial shade to estimate yields if intercropped with Pinus taeda L Agroforestry Systems, 2014, 88, 489-503.	0.9	24
22	Forest Fertilizer Applications in the Southeastern United States from 1969 to 2016. Forest Science, 2019, 65, 355-362.	0.5	24
23	Modeling mid-rotation fertilizer responses using the age-shift approach. Forest Ecology and Management, 2008, 256, 256-262.	1.4	22
24	Midrotation Vegetation Control and Fertilization Response in <l>Pinus taeda</l> and <l>Pinus elliottii</l> across the Southeastern United States. Southern Journal of Applied Forestry, 2012, 36, 44-53.	0.4	21
25	Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations. Biomass and Bioenergy, 2017, 97, 162-171.	2.9	19
26	A common garden experiment examining light use efficiency and heat sum to explain growth differences in native and exotic Pinus taeda. Forest Ecology and Management, 2018, 425, 35-44.	1.4	19
27	Juvenile Southern Pine Response to Fertilization Is Influenced by Soil Drainage and Texture. Forests, 2015, 6, 2799-2819.	0.9	18
28	Economic assessment of Eucalyptus globulus short rotation energy crops under contrasting silvicultural intensities on marginal agricultural land. Land Use Policy, 2018, 76, 329-337.	2.5	18
29	A Method for Estimating Deciduous Competition in Pine Stands Using Landsat. Southern Journal of Applied Forestry, 2012, 36, 71-78.	0.4	16
30	Sentinel-2 Leaf Area Index Estimation for Pine Plantations in the Southeastern United States. Remote Sensing, 2020, 12, 1406.	1.8	14
31	Crown architecture, crown leaf area distribution, and individual tree growth efficiency vary across site, genetic entry, and planting density. Trees - Structure and Function, 2020, 34, 73-88.	0.9	13
32	Opportunities for Fertilization of Loblolly Pine in the Sandhills of the Southeastern United States. Southern Journal of Applied Forestry, 2009, 33, 129-136.	0.4	11
33	Intra-annual nutrient flux in Pinus taeda. Tree Physiology, 2012, 32, 1237-1258.	1.4	11
34	Response of Eucalyptus grandis in Colombia to mid-rotation fertilization is dependent on site and rate but not frequency of application. Forest Ecology and Management, 2015, 350, 30-39.	1.4	11
35	Leaf area duration in natural range and exotic Pinus taeda. Canadian Journal of Forest Research, 2010, 40, 224-234.	0.8	9
36	A Model to Estimate Leaf Area Index in Loblolly Pine Plantations Using Landsat 5 and 7 Images. Remote Sensing, 2021, 13, 1140.	1.8	8

TIMOTHY J ALBAUGH

#	Article	IF	CITATIONS
37	A Field Chamber for Testing Air Pollution Effects on Mature Trees. Journal of Environmental Quality, 1992, 21, 476-485.	1.0	6
38	Duration of response to nitrogen and phosphorus applications in mid-rotation Pinus taeda. Forest Ecology and Management, 2021, 498, 119578.	1.4	6
39	Ecosystem Nutrient Retention after Fertilization of <i>Pinus taeda</i> . Forest Science, 2014, 60, 1131-1139.	0.5	5
40	A New Approach for Modeling Volume Response from Mid-Rotation Fertilization of Pinus taeda L. Plantations. Forests, 2020, 11, 646.	0.9	5
41	A 50-Year Retrospective of the Forest Productivity Cooperative in the Southeastern United States: Regionwide Trials. Journal of Forestry, 2021, 119, 73-85.	0.5	5
42	Longer greenup periods associated with greater wood volume growth in managed pine stands. Agricultural and Forest Meteorology, 2021, 297, 108237.	1.9	4
43	<i>Eucalyptus grandis</i> Response to Calcium Fertilization in Colombia. Forest Science, 2021, 67, 701-710.	0.5	3
44	Financial Returns for Biomass on Short-Rotation Loblolly Pine Plantations in the Southeastern United States. Forest Science, 0, , .	0.5	2